MAPP Webinar Series: Modeling at Fine Scales: Research to Improve Regional and Local Climate Information

  • 13 December 2013
  • Number of views: 4475
Date/Time Title
December 17, 2013
1:00 PM - 2:00 PM ET
Modeling at Fine Scales: Research to Improve Regional and Local Climate Information
  Speakers and Topics: John Dunne (NOAA/GFDL)
Prototyping global Earth System Models at high resolution: Representation of Eastern Boundary Currents
 
Julia Manginello (COLA)
Future changes in the western North Pacific tropical cyclone activity; results from Project Athena
 
Vasu Misra (Florida State University)
High resolution coupled ocean-atmosphere modeling over the Intra-American Seas
Remote Access:   To view the slideshow:
1. Click the link below or copy and paste the link to a browser: https://cpomapp.webex.com/cpomapp/onstage/g.php?t=a&d=621542254
2. Enter your name and e-mail address, and click "Join Now". If necessary, enter the event passcode: 20910
 
To hear the audio:
Utilize the on-screen dial-in instructions visible after logging into webex
 
Webex and the teleconference line can accommodate only 100 attendees on a first-come, first-served basis. Please try to share a connection with colleagues at your institution to preserve space for others.
Download Webcast:

(Right click and Save Link As) .mp4

ABSTRACTS

Julia Manginello (COLA) -- Future changes in the western North Pacific tropical cyclone activity; results from Project Athena – How tropical cyclone activity in the northwestern Pacific might change in a future climate is assessed using multi-decadal AMIP-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km global resolution. The model reproduces many aspects of the present-day typhoon climatology and variability well, including the full intensity distribution and genesis locations, and their changes in response to El Nino and the Southern Oscillation.
 
The 16-km IFS projects a small change in the typhoon frequency at the end of the 21st century related to a distinct southward shift in the genesis locations. It is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in the activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate.
 
The model also projects about fifty percent increase in the power dissipation index mainly due to a significant increase in the frequency of the more intense storms, which is found to be comparable to the natural variability in the model. Based on the composite analysis of large samples of super-typhoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south and within an environment that is thermodynamically more favorable for faster development and higher intensities and dynamically virtually unchanged. Coherent changes in the vertical structure of the super-typhoon composites show system-scale amplification of the primary and secondary circulations with the signs of contraction. Including an upward shift in the frequency of the most intense updrafts and overall stronger convection in the eyewall.
 
Vasu Misra (Florida State) -- High resolution coupled ocean-atmosphere modeling over the Intra-American Seas -- We have conducted coupled downscaled integrations over the Intra-American Seas at 15km grid resolution and compared the results with available observations and CFSR.  A highlight of the talk is the substantial improvement in the ocean circulation features of the Intra-American Seas compared to CFSR. We argue that coupled regional ocean-atmosphere models offer a new paradigm for downscaling especially for coastal regions, especially when the progress in the improvement of global models is excruciatingly slow.
 
John Dunne (GFDL) -- Prototyping global Earth System Models at high resolution: Representation of Eastern Boundary Currents -- The world’s major Eastern Boundary Currents (EBC) are critically important areas for global fisheries. Computational limitations have divided past EBC modeling into two types: high resolution regional approaches that resolve the strong meso-scale structures involved, and coarse global approaches that represent the large scale context for EBCs, but only crudely resolve only the largest scales of their manifestation. These latter global studies have illustrated the complex mechanisms involved in the climate change and acidification response in these regions, with the EBC response dominated not by local adjustments but large scale reorganization of ocean circulation through remote forcing of water-mass supply pathways. While qualitatively illustrating the limitations of regional high resolution studies in long term projection, these studies lack the ability to robustly quantify change because of the inability of these models to represent the baseline meso-scale structures of EBCs. In the present work, we compare current generation coarse resolution (one degree) and a prototype next generation high resolution (1/10 degree) Earth System Models (ESMs) from NOAA’s Geophysical Fluid Dynamics Laboratory in representing the four major EBCs. We review the long-known temperature biases that the coarse models suffer in being unable to represent the timing and intensity of upwelling-favorable winds.  In promising contrast, we show that the high resolution prototype is capable of representing not only the overall meso-scale structure in physical and biogeochemical fields, but also the appropriate offshore extent of temperature anomalies and other EBC characteristics. In terms of representation of large scale circulation, results were mixed, with the high resolution prototype addressing some, but not all, of the biases in the coarse resolution ESM.  The ability to simulation EBCs in the global context at high resolution in global ESMs represents a fundamental milestone towards both seasonal to inter-annual ecological forecasting and long term projection of climate, ecosystem, and acidification baselines and sensitivity.

Print

Name:
Email:
Subject:
Message:
x
  • Subscribe to our newsletter!



Contact MAPP

Dr. Annarita Mariotti
MAPP Program Director
P: 301-734-1237
E: annarita.mariotti@noaa.gov

Dr. Heather Archambault
MAPP Program Manager
P: 301-734-1219
E: heather.archambault@noaa.gov

Dr. Daniel Barrie
MAPP Program Manager
P: 301-734-1256
E: daniel.barrie@noaa.gov

Alison Stevens*
MAPP Program Specialist
P: 301-734-1218
E: alison.stevens@noaa.gov

«November 2017»
MonTueWedThuFriSatSun
303112345
6789101112
13141516171819
20212223242526
27282930123
45678910

ABOUT OUR ORGANIZATION

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather. In 2011, the United States experienced a record high number (14) of climate- and weather-related disasters where overall costs reached or exceeded $1 billion. Combined, these events claimed 670 lives, caused more than 6,000 injuries, and cost $55 billion in damages. Businesses, policy leaders, resource managers and citizens are increasingly asking for information to help them address such challenges.

CONTACT US

Climate Program Office
1315 East-West Hwy, Suite 1100
Silver Spring, MD 20910

CPO.webmaster@noaa.gov