SESSION 4: BREAKOUT SESSION: BRIDGING THE GAP BETWEEN PREDICTABILITY AND CURRENT SKILL

Chair: Kinter
Rapporteur: Tippett
Focus Questions

1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?

2. Without resource limits, how would you approach answering those questions?

3. How would a multi-model ensemble re-forecast contribute to answering those questions?

4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?
Focus Questions

1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?

2. Without resource limits, how would you approach answering those questions?

3. How would a multi-model ensemble re-forecast contribute to answering those questions?

4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?
Summary of Talks So Far

• Predicting the predictors (role of bias?)
 – MJO
 – Sudden Stratospheric Warming
 – SST (ENSO)
 – Soil moisture and snow
 – Sea ice

• Predicting the impact of the predictors (role of bias?)
 – MJO \rightarrow NAO, tornadoes & severe wx
 – SSW \rightarrow NAO
 • May be better to just predict NAO – higher S/N; predictable component?
 – Soil moisture and veg. phenology \rightarrow contribute to precip. and circulation forecast skill
 – Ocean eddies \rightarrow A-PBL and O-PBL forecast skill
Focus Questions

1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?

2. **Without resource limits, how would you approach answering those questions?**

3. How would a multi-model ensemble re-forecast contribute to answering those questions?

4. **Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?**
Summary of Talks So Far

• Modeling issues
 – Spatial resolution (and re-tuning methodology?)
 – Ocean-atmosphere coupling (eddy-resolving ocean?)
 – Lead-time dependent bias
 – Coupled DA and initialization (eddy too?)
 – Ensemble generation
 – Spread/skill relationship
 – Verification (flow dependence; precip., ensembles)
 – Benefit of MME
 – Reforecast ensemble size and length (quality of initial states)
Focus Questions

1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?

2. Without resource limits, how would you approach answering those questions?

3. **How would a multi-model ensemble re-forecast contribute to answering those questions?**

4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?
Focus Questions

1. What are the most important scientific questions that need to be answered to bridge the gap between current and potential skill for sub-seasonal timescales?

2. Without resource limits, how would you approach answering those questions?

3. How would a multi-model ensemble re-forecast contribute to answering those questions?

4. Within resource limits, what system improvements (e.g. horizontal resolution, stratospheric vertical resolution, ensemble size, initialization) are most likely to cost-effectively improve sub-seasonal skill?
Balancing Demands on Resources

Data Assimilation

Data and HPC Resources

Resolution

Complexity

Duration and/or Ensemble size

- Atmospheric Physics/Dynamics
- Ocean Dynamics
- Terrestrial Energy/Weather
- Global Warming
- CO2
- Biogeochemical Cycles
- Tropospheric Chemistry

External forcing

- CO2
- Biogeochemical Cycles
- Tropospheric Chemistry
- Ocean Dynamics
- Terrestrial Energy/Weather
- Global Warming
- CO2

External forcing

- CO2
- Biogeochemical Cycles
- Tropospheric Chemistry
- Ocean Dynamics
- Terrestrial Energy/Weather
- Global Warming
- CO2