The NOAA Climate Reanalysis Task Force Technical Workshop

Gilbert P. Compo
Univ. of Colorado/CIRES and NOAA ESRL/Physical Sciences Division
compo@colorado.edu

Task Force mission:
Address outstanding issues in atmospheric, oceanic, and land reanalysis
Develop a greater degree of integration among Earth system reanalysis components.
Integrate with national and international efforts.

Leads: Arun Kumar, Gilbert Compo; **co-Leads:** James Carton, Suru Saha
Organized by CPO—Modeling, Analysis, Predictions, and Projections
http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/ClimateReanalysisTaskForce.aspx

Reanalyses.org [Advancing Reanalysis], monthly telecons (need to login)
<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gil Compo (Lead)</td>
<td>U of Colorado/CIRES & ESRL/PSD</td>
</tr>
<tr>
<td>Arun Kumar (Lead)</td>
<td>NOAA NCEP Climate Prediction Center</td>
</tr>
<tr>
<td>Suranjana Saha (Co-Lead)</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Jim Carton (Co-Lead)</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Henrique Alves</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>David Behringer</td>
<td>NOAA NCEP Climate Prediction Center</td>
</tr>
<tr>
<td>Arun Chawla</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Jiarui Dong</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Xiquan Dong</td>
<td>University of North Dakota</td>
</tr>
<tr>
<td>Wesley Ebisuzaki</td>
<td>NOAA NCEP Climate Prediction Center</td>
</tr>
<tr>
<td>Michael Ek</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Mark Iredell</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Eugenia Kalnay</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Daryl Kleist</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Xu Li</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Craig Long</td>
<td>NOAA NCEP Climate Prediction Center</td>
</tr>
<tr>
<td>Sarah Lu</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>John McCormack</td>
<td>NRL/SSD</td>
</tr>
<tr>
<td>Jesse Meng</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Kingtse Mo</td>
<td>NOAA Climate Prediction Center (CPC)</td>
</tr>
<tr>
<td>Shrinivas Moorthi</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Steve Penny</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Judith Perwitz</td>
<td>NOAA Physical Sciences Division (PSD)</td>
</tr>
<tr>
<td>Prashant Sardeshmukh</td>
<td>NOAA/ESRL/CIRES</td>
</tr>
<tr>
<td>Fabrizio Sassi</td>
<td>NRL/SSD</td>
</tr>
<tr>
<td>Hendrik Tolman</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Russell Vose</td>
<td>NOAA National Climatic Data Center (NCDC)</td>
</tr>
<tr>
<td>Jun Wang</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Jeffrey Whitaker</td>
<td>NOAA/ESRL</td>
</tr>
<tr>
<td>Jack Woollen</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Xingren Wu</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Baike Xi</td>
<td>University of North Dakota</td>
</tr>
<tr>
<td>Youlong Xia</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Yan Xue</td>
<td>NOAA NCEP Climate Prediction Center</td>
</tr>
<tr>
<td>Rongqian Yang</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
</tr>
<tr>
<td>Lisan Yu</td>
<td>Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>Mike Bosilovich</td>
<td>NASA Goddard</td>
</tr>
<tr>
<td>Dick Dee</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
</tr>
</tbody>
</table>

http://cpo.noaa.gov/ClimatePrograms/ModelingAnalysisPredictionsandProjections/MAPPTaskForces/ClimateReanalysisTaskForce/Participants.aspx
Projects

Research towards the next generation of NOAA Climate Reanalyses
PI: Arun Kumar

Improving the Land Surface Components of the CFS Reanalysis
PI: Michael Ek

Exploration of advanced ocean data assimilation schemes at NCEP
PI: James Carton

Improving the Prognostic Ozone Parameterization in the NCEP GFS and CFS for Climate Reanalysis and Operational Forecasts
PI: Gilbert Compo

Strategies to Improve Stratospheric Processes in Climate Reanalysis
PI: Craig Long

Evaluating CFSR Air-Sea Heat, Freshwater, and Momentum Fluxes in the context of the Global Energy and Freshwater Budgets
PI: Lisan Yu

Diagnosing and quantifying uncertainties of the reanalyzed clouds, precipitation and radiation budgets over the Arctic and Southern Great Plains using combined surface-satellite observations
PI: Xiquan Dong
<table>
<thead>
<tr>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research towards the next generation of NOAA Climate Reanalyses</td>
</tr>
<tr>
<td>PI: Arun Kumar [Next Presentation]</td>
</tr>
<tr>
<td>Improve Reanalysis Components in Atmosphere, Land, and Ocean</td>
</tr>
<tr>
<td>PI: Michael Ek</td>
</tr>
<tr>
<td>Exploration of advanced ocean data assimilation schemes at NCEP</td>
</tr>
<tr>
<td>PI: James Carton</td>
</tr>
<tr>
<td>Improve Stratosphere</td>
</tr>
<tr>
<td>PI: Gilbert Compo</td>
</tr>
<tr>
<td>Strategies to Improve Stratospheric Processes in Climate Reanalysis</td>
</tr>
<tr>
<td>PI: Craig Long</td>
</tr>
<tr>
<td>Evaluating CFSR Air-Sea Heat, Freshwater, and Momentum Fluxes in the context of the Global Energy and Freshwater Budgets</td>
</tr>
<tr>
<td>PI: Lisan Yu</td>
</tr>
<tr>
<td>Diagnoses to evaluate and speed Improvements</td>
</tr>
<tr>
<td>PI: Xiquan Dong</td>
</tr>
<tr>
<td>Diagnosing and quantifying uncertainties of the reanalyzed clouds, precipitation and radiation budgets over the Arctic and Southern Great Plains using combined surface-satellite observations</td>
</tr>
</tbody>
</table>
Workshop Objectives

- **Report** on NOAA Climate Reanalysis Task Force progress
- **Exchange** reanalysis approaches, algorithms, and techniques currently in use and under development.
- **Discuss techniques** for addressing outstanding issues in the reanalysis efforts, e.g., presence of spurious discontinuities and trends, coupling of Earth System components, inclusion of new areas such as aerosols.
- **Identify the various requirements** for reanalysis products.
- **Determine strategies** and overlaps for national and international reanalysis efforts based on scientific drivers for climate and weather research.
Is the Pacific Walker Circulation changing in response to Global Warming?

Results from Sandeep, Stordal, Sardeshmukh, and Compo 2014 (Cli. Dyn., http://dx.doi.org/10.1007/s00382-014-2135-3)

Yes, PWC seems to be **strengthening** in several observational datasets.

Yes, PWC seems to be **weakening** in coupled model simulations.
Walker Circulation is the east-west part of the global overturning circulation.

As global temperature increases, global water vapor increases faster than precipitation in coupled climate models forced with greenhouse gases.

Overturning circulation (global convective mass flux) must **weaken** to compensate *[Held and Soden 2006]*.

- Sea Level Pressure-based Pacific Walker Circulation used as proxy to investigate:
 - *Vecchi et al. 2006* and others found **weakening**.
 - *Meng et al. 2012* and others found **strengthening**.
 - *Solomon and Newman 2012* found **no change**.
ΔTS from HadISST1

ΔTS is average of HadISST1, ERSSTv3b, COBE1

Sandeep et al. 2014

Anomalies of SLP-based Pacific Walker Circulation and West minus East Equatorial Pacific SST gradient

20CR (only pressure assimilated)

SST-forced CAM4 (3 members)

Radiative forcings CMIP5 (12 models)

PWC trends and variability are closely related to ΔTS

PWC

ΔTS

ΔTS

ΔTS

ΔTS
PWC compared to convective mass flux (Mc) in ENSO-related and ENSO-unrelated SST-forced CAM4 simulations.

Global convective mass flux decreases as globe warms regardless of whether Pacific Walker Circulation weakens or strengthens.

Sandeep et al. 2014

SSTs filtered to retain ENSO (3 members)

SSTs filtered to remove ENSO (3 members)
Conclusions

1. NOAA Climate Reanalysis Task Force is researching reanalysis improvements and outstanding issues. Example: Pacific Walker circulation.

2. Pacific Walker Circulation trends and variability depend on definition. SLP-based definition closely related to SST gradient; almost unrelated even to Tropical overturning circulation.

3. SLP-based PWC index is *not a proxy* for global or tropical convective mass flux. Global arguments cannot be applied to regional circulation.

4. PWC appears to be strengthening over past century in reanalyses and SST-forced AGCM simulations.

5. SST-forced AGCM and GHG-forced CMIP5 historical simulations agree that global and tropical convective mass flux is weakening.

6. Some Goals of Reanalysis: improve representation and reduce uncertainty of climate trends, such as global overturning circulation.
Responsibility of Speakers: Stick to time, 80% for presentation, 20% for questions.

Responsibility of All Attendees: Interact, Discuss, Ask questions, Discuss more.

Can use reanalyses.org/workshop2015 to leave comments, thoughts, and questions.
Extra Slides
Pacific Walker Circulation compared to Convective Mass Flux (Mc) from SST-forced and coupled GCMs

SST-forced CAM4 (3 members)

SST-forced GISS-E2-R (4 members)

Radiatively forced CMIP5 (12 models)

Correlation between Pacific Walker Circulation and convective mass flux is low for all simulations. Trends can be opposite.

Sandeep et al. 2014
SST and radiatively forced trends (1901-2005)

SST-forced CAM4 (3 members)

(a) 1901-2005 Linear trend in SLP \(\text{Pa decade}^{-1} \)

(b) 1901-2005 Linear trend in \(\omega_{500} \) \(\text{Pa s}^{-1} \text{ decade}^{-1} \)

(c) 1901-2005 Linear trend in Mc \(\text{kg m}^{-2} \text{ s}^{-1} \text{ decade}^{-1} \)

(d) 1901-2005 Linear trend in TS \(\text{K decade}^{-1} \)

CMIP5 (12 models)

(a) 1901-2005 Linear trend in SLP \(\text{Pa decade}^{-1} \)

(b) 1901-2005 Linear trend in \(\omega_{500} \) \(\text{Pa s}^{-1} \text{ decade}^{-1} \)

(c) 1901-2005 Linear trend in Mc \(\text{kg m}^{-2} \text{ s}^{-1} \text{ decade}^{-1} \)

(d) 1901-2005 Linear trend in TS \(\text{K decade}^{-1} \)

Different trends in various facets of Walker Circulation
HadSLP2r has spurious increase after 2005 (becomes adjusted NCEP-NCAR reanalysis). Variance is consistently less than ERA-Int or 20CR. HadSLP2r correlation is lower with ERA-Int compared to 20CR.
Reanalysis, SST and radiatively forced trends (1901-2005)

20th Century
Reanalysis 20CR

SST-forced CAM4
(3 members)

Radiatively forced
CMIP5
(12 models)

20CR trends agree better with SST-forced ensemble.
What is 20CR trend sensitivity to SST boundary condition?
CAM4 AGCM simulations forced by ENSO-related and ENSO-unrelated SSTs (filter from Compo and Sardeshmukh 2010)

SSTs filtered to retain ENSO (3 members)

SSTs filtered to remove ENSO (3 members)

\[\Delta TS \] is average of HadISST, ERSSTv3b, COBE

Opposite SST gradient trends (\(\Delta TS\)) force opposite PWC trends.

Sandeep et al. 2014
Change relative to 1901 to 1910 mean

Sandeep et al. 2014
1901-2005 Linear Trend from CAM4 SST-forced simulations (3 ensemble members)

Sea Level Pressure

500 hPa vertical velocity

Land and Sea Surface Temperature

Each ensemble member has different SST dataset prescribed.

Average of HadISST1, ERSSTv3b, COBE SST

Sandeep et al. 2014

Trend patterns of SLP and vertical velocity correlate moderately ($r=0.41$).
Stratospheric Ozone

• A key radiatively active constituent in both solar and infrared radiation

• Affects temperature of stratosphere, troposphere, and surface

• Reduces harmful ultraviolet light reaching surface

• Ozone variations play role in climate variability of Northern and Southern Hemisphere

• Reanalysis systems, and the weather models on which they rely, must accurately represent the ozone field and its effect on climate variations.

• Complete ozone photochemistry is too computationally intensive to include in current weather and climate models

• So, parameterize processes!
Ensemble Filter Algorithm (Whitaker and Hamill, 2002)

Ensemble mean

\[\bar{x}_j^a = \bar{x}_j^b + K \left(y^o - \bar{y}_j^b \right), \]

Ensemble deviations

\[x'_j^a = x'_j^b - \tilde{K} \left(y'_b \right), \]

Sample Kalman Gain

\[K = P^b H^T (H P^b H^T + R)^{-1} = \frac{1}{n-1} \sum_{j=1}^{n} x'_j^b y'_j^b \left(\frac{1}{n-1} \sum_{j=1}^{n} y'_j^b y'_j^b + R \right)^{-1} \]

Sample Modified Kalman Gain

\[\tilde{K} = \left(1 + \sqrt{\frac{R}{H P^b H^T + R}} \right)^{-1} K, \]

\(x_j = \bar{x} + x'_j \) is pressure, air temperature, winds, humidity, etc. at all levels and gridpoints, every six hours.

\(y^o \) is only observations of hourly and synoptic **surface pressure**,

\(y^b = H x^b \) is guess surface pressure
Algorithm uses an ensemble of GCM runs to produce the weight K that varies with the atmospheric flow and the observation network every 6 hours.

Using 56 member ensemble, HadISST1.1 prescribed SST and sea ice monthly boundary conditions ([Rayner et al. 2003](http://go.usa.gov/XTd)).

1871-2011: T62, 28 level NCEP GFS08ex atmosphere/land model
- 9 hour forecasts for 6 hour centered analysis window
- time-varying CO$_2$, solar and volcanic radiative forcing
- prognostic stratospheric ozone

Sampling and Model error parameterizations:
- Covariance localization (4000 km, 4 scale heights) and
- Latitude and time dependent multiplicative covariance inflation (alpha = 1.01 to 1.12) ([Anderson and Anderson, 1999; Houtekamer and Mitchell, 2001; Hamill et al. 2001; Whitaker et al., 2004](http://go.usa.gov/XTd))
High correlations in Northern Hemisphere midlatitudes where dynamics are an important contributor to ozone variations. Correlations are consistent with measurements taken throughout the record. (Brönnimann and Compo 2012)
Forecasts of Equatorial Stratospheric \(O_3 \) mixing ratios using US Navy NOGAPS-ALPHA model with and without CHEM2D-OPP temperature term (June)

\[
\frac{\partial \chi}{\partial t} (P - L) = (P - L)_0 + \frac{\partial (P - L)}{\partial \chi_{O3}} \left|_0 \right. \left(\chi_{O3} - \bar{\chi}_{O3} \right) + \frac{\partial (P - L)}{\partial T} \left|_0 \right. \left(T - \bar{T} \right)
\]

Adding temperature term should significantly reduce unrealistic loss in GFS-type implementation

McCormack et al. 2013
GFS ozone forecast skill degrades significantly after 5 days due, in part, to unrealistic losses over most of the globe resulting in a global negative bias.

Why the loss of ozone? May be related to terms not used. Long et al. 2013
The 20th Century Reanalysis Project (1871-2011)

Summary: An international project led by NOAA and CIRES to produce 4-dimensional reanalysis datasets for climate applications extending back to the 19th century using an Ensemble Kalman Filter and *only surface pressure observations*. Research will lead to improved historical reanalysis back to 1850, part of suite of NOAA Climate Reanalyses.

Weekly-averaged anomaly during
July 1936 United States Heat Wave (997 dead during 10-day span)

Daily variations compare well with in-situ data.

The reanalyses provide:
- First-ever estimates of near-surface to tropopause 6-hourly fields extending back to the beginning of the 20th century;
- Estimates of uncertainties in the basic reanalyses and derived quantities (e.g., storm tracks).

Examples of uses:
- Validating climate models.
- Determining storminess and storm track variations over the last 150 years.
- Understanding historical climate variations (e.g., Pacific Walker Circulation).
- Estimating risks of extreme events

Compo et al. 2011
Improving the Prognostic Ozone Parameterization in the NCEP GFS and CFS for Climate Reanalysis and Operational Forecasts

PI: Gilbert P. Compo1,2

Co-PIs: Jeffrey S. Whitaker2
Prashant D. Sardeshmukh1,2
Craig Long3
Shrinivas Moorthi4
Sarah Lu4
John P. McCormack5

Collaborator: Stefan Brönniman6

1Univ. of Colorado/CIRES
2NOAA Earth System Research Laboratory/Physical Sciences Division
3NOAA, National Centers for Environmental Prediction, Climate Prediction Center
4NOAA, National Centers for Environmental Prediction, Environmental Modeling Center
5Naval Research Laboratory
6University of Bern
CHEM2D-OPP is based on gas-phase chemistry circa 2000. Same approach as used in ECMWF IFS (Cariolle and Deque 1986). Includes ozone depletion from CFCs.

Net ozone photochemical tendency

\[\frac{d \chi_{O_3}}{dt} = (P - L) \left[\chi_{O_3}, T, c_{O_3} \right] \]

Approximate as Taylor series linearized about reference state (denoted by overbar).

\[\frac{\partial \chi}{\partial t} (P - L) = (P - L)_0 + \frac{\partial (P - L)}{\partial \chi_{O_3}} \left| _0 \left(\chi_{O_3} - \bar{\chi}_{O_3} \right) \right. + \frac{\partial (P - L)}{\partial T} \left| _0 (T - \bar{T}) \right. + \frac{\partial (P - L)}{\partial c_{O_3}} \left| _0 (c_{O_3} - \bar{c}_{O_3}) \right. \]

\[\chi_{O_3} \] prognostic Ozone mixing ratio
\[T \] Temperature
\[c_{O_3} \] column ozone
Partial use of CHEM2D-OPP in the current NCEP Global Forecast System (GFS) atmosphere/land model

\[\frac{\partial \chi}{\partial t} (P - L) = (P - L)_0 + \frac{\partial (P - L)}{\partial \chi_{o3}} \bigg|_0 \left(\chi_{o3} - \bar{\chi}_{o3} \right) \]

Reference tendency \((P-L)_0\) and all partial derivatives are computed from odd oxygen \((Ox \equiv O_3+O)\) reaction rates in the CHEM2D photochemical transport model.

CHEM2D is a global model extending from the surface to ~120 km that solves 280 chemical reactions for 100 different species within a transformed Eulerian mean framework with fully interactive radiative heating and dynamics.

The partial CHEM2D-OPP is used in the 20\(^{th}\) Century Reanalysis (20CR) and operational NCEP forecast system, and atmosphere of Climate Forecast System (CFS) Reanalysis (CFSR) and operational CFSv2.

- \(\chi_{o3}\) : prognostic Ozone mixing ratio
- \(T\) : Temperature
- \(c_{o3}\) : column ozone
Daily column ozone measurements and 20CR daily ozone at Arosa, Switzerland (46.8N, 9.7E)

Anomaly comparison spanning 1924 to 1963

20CR ozone field has large scale fluctuations that reflect ozone highs associated with, e.g., cold air outbreaks. Overall, find high correlations in Northern Hemisphere midlatitudes where dynamics are an important contributor to ozone variations. ([Brönnimann and Compo 2012](#)).
Issue: Reference state ozone, temperature, and CHEM2D-OPP parameterization coefficients include the chemistry arising from CFCs *throughout the 1871-2011* 20CR record.

Project: new CHEM2D-OPP coefficients and an appropriate ozone climatology will be generated for the period before widespread CFC usage. Test effects on 20CR fields by comparing to historical ozone observations and to upper-air temperature observations.

Also include additional terms.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Behringer</td>
<td>NOAA NCEP CPC</td>
<td>Prashant Sardeshmukh & NOAA/ESRL PSD</td>
</tr>
<tr>
<td>Jiarui Dong</td>
<td>NOAA NCEP EMC</td>
<td>Fabrizio Sassi</td>
</tr>
<tr>
<td>Xiquan Dong</td>
<td>University of North Dakota</td>
<td>Hendrik Tolman</td>
</tr>
<tr>
<td>Wesley Ebisuzaki</td>
<td>NOAA NCEP CPC</td>
<td>Russell Vose</td>
</tr>
<tr>
<td>Eugenia Kalnay</td>
<td>University of Maryland</td>
<td>Jeffrey Whitaker</td>
</tr>
<tr>
<td>Craig Long</td>
<td>NOAA NCEP CPC</td>
<td>Jack Woollen</td>
</tr>
<tr>
<td>Sarah Lu</td>
<td>NOAA NCEP EMC</td>
<td>Baike Xi</td>
</tr>
<tr>
<td>John McCormack</td>
<td>Naval Research Laboratory/SSD</td>
<td>Youlong Xia</td>
</tr>
<tr>
<td>Jesse Meng</td>
<td>NOAA NCEP EMC</td>
<td>Yan Xue</td>
</tr>
<tr>
<td>Kingtse Mo</td>
<td>NOAA NCEP CPC</td>
<td>Rongqian Yang</td>
</tr>
<tr>
<td>Shrinivas Moorthi</td>
<td>NOAA Environmental Modeling Center (EMC)</td>
<td>Lisan Yu</td>
</tr>
<tr>
<td>Judith Perlwitz</td>
<td>U. of Colorado/CIRES & NOAA/ESRL PSD</td>
<td></td>
</tr>
</tbody>
</table>

Affiliate

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike Bosilovich</td>
<td>NASA Goddard</td>
</tr>
<tr>
<td>Dick Dee</td>
<td>European Centre for Medium-Range Weather Forecasts</td>
</tr>
</tbody>
</table>
Walker Circulation is the east-west part of the global overturning circulation. As global temperature increases, global water vapor increases faster than precipitation in coupled climate models forced with greenhouse gases. Overturning circulation (global convective mass flux) must weaken to compensate [Held and Soden 2006].

- Sea Level Pressure-based Pacific Walker Circulation used as proxy to investigate: Vecchi et al. 2006 and others found weakening.
- Meng et al. 2012 and others found strengthening.
- Solomon and Newman 2012 found no change.

500 hPa vertical velocity, SONDJ

Climo (ERA-Int)

Agreement in overturning PWC:
correlations between ERA-40 and 20CR > 0.95.
No significant trend in PWC since 1871 using pressure-based 20CR.

Compo et al. 2011