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Abstract 39 

As a key component of tropical atmospheric variability, intraseasonal variability (ISV) 40 

over the eastern north Pacific (ENP) exerts pronounced influences on regional weather and 41 

climate. Since general circulation models (GCMs) are essential tools for prediction and 42 

projection of future climate, current model deficiencies in representing this important 43 

variability leave us greatly disadvantaged in studies and prediction of climate change. In this 44 

study, we have assessed model fidelity in representing ENP ISV by analyzing sixteen GCMs 45 

participating in the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). 46 

Among the sixteen CMIP5 GCMs examined in this study, only seven GCMs capture the 47 

spatial pattern of the leading ENP ISV mode relatively well, although even these several 48 

GCMs exhibit biases in simulating ISV amplitude. Analyses indicate that model fidelity in 49 

representing ENP ISV is closely associated with ability to simulate a realistic summer mean 50 

state. The presence of westerly or weak mean easterly winds over the ENP warm pool region 51 

could be conducive for more realistic simulations of the ISV. One hypothesis to explain this 52 

relationship is that a realistic mean state could produce the correct sign of surface flux 53 

anomalies relative to the ISV convection, which helps to destabilize local intraseasonal 54 

disturbances. The projected changes in characteristics of ENP ISV under the RCP8.5 55 

projection scenario are also explored based on simulations from four CMIP5 GCMs. Results 56 

suggest that, in a future climate, the amplitude of ISV could be enhanced over the southern 57 

part of the ENP, while reduced over the northern ENP off the coast of Mexico/Central 58 

America and the Caribbean.  59 
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1. Introduction  60 

During boreal summer, convective activity over the eastern north Pacific (ENP) along 61 

the intertropical convergence zone (ITCZ) exhibits significant intraseasonal variability (ISV).  62 

Through its associated large-scale circulation and thermodynamical variations, the ISV exerts 63 

broad impacts on regional weather and climate systems, including the North American 64 

Monsoon, mid-summer drought over central America, Caribbean rainfall and low-level jet, as 65 

well as tropical cyclone activity over the ENP and the Gulf of Mexico (e.g., Magana et al. 66 

1999; Maloney and Hartmann 2000a, 2000b; Higgins and Shi 2001; Lorenz and Hartmann 67 

2006; Small et al. 2007; Wu et al. 2009; Serra et al. 2010; Martin and Schumacher 2010). By 68 

modulating the activity of these climate / weather systems on an intraseasonal time scale, the 69 

ISV thus provides a foundation for extended-range prediction of the tropical atmosphere.  70 

Two leading ISV modes associated with the ENP ITCZ have been previously reported 71 

with dominant periods of 40 days (hereafter a 40-day ISV mode) and 16 days (i.e., a quasi-72 

biweekly mode, QBM), respectively. The 40-day ISV mode over the ENP is largely 73 

considered a local expression of the global Madden-Julian Oscillation (MJO; Madden and 74 

Julian 1994; e.g., Maloney and Esbensen 2003), although recent modeling work suggests that 75 

similar 40-day ENP variability can exist when isolated from the Eastern Hemisphere 76 

(Rydbeck et al. 2012). In addition to the eastward propagation, a northward-moving 77 

component of this mode is also noted (Jiang and Waliser 2008; Maloney et al. 2008; Small et 78 

al. 2011), exhibiting substantial similarity to its counterpart in the Asian summer monsoon 79 

(Jiang et al. 2004; Jiang and Waliser 2008). The second leading ISV mode over the ENP (i.e., 80 

QBM) exhibits a smaller spatial scale than the first ISV mode, and is largely characterized by 81 

meridional propagation (Jiang and Waliser 2009).  82 
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While significant achievements have been made in modeling global ISV during past 83 

decades, significant challenges remain in current general circulation models (GCMs; e.g., 84 

Slingo et al. 1996; Waliser et al. 2003; Lin et al. 2006; Kim et al. 2009). For ENP ISV, by 85 

applying an extended empirical orthogonal function (EEOF) technique, a recent analysis 86 

including many CMIP3-era models illustrated that among the total nine models examined, 87 

only two GCMs were able to realistically simulate both of the two observed leading ISV 88 

modes over the ENP (Jiang et al. 2011). Deficiencies of current GCMs in representing this 89 

important form of variability greatly limit our skill for extended-range prediction. Until very 90 

recently, useful predictive skill of the global ISV in most current GCMs had generally been 91 

limited to only 1–2 weeks (Waliser 2011), although the intrinsic period of the dominant 92 

mode of intraseasonal variability is about 40-50 days. Meanwhile, as GCMs have been 93 

essential tools for prediction and projection of climate changes, large model deficiencies in 94 

depicting this fundamental component of atmospheric variability leave us disadvantaged in 95 

undertaking climate change studies, particularly in projecting future activities of extreme 96 

events that are significantly modulated by ISV.  97 

Building upon past successes of several model comparison project activities, the fifth 98 

phase of the Coupled Model Intercomparison Project (CMIP5) provides another state-of-the-99 

art multi-model dataset to advance our knowledge of climate variability and climate change 100 

(Taylor et al. 2012). In this study, we assess CMIP5 model fidelity in representing ISV over 101 

the ENP and neighboring areas by analyzing sixteen GCMs participating in CMIP5. This 102 

work is a part of the collective efforts coordinated by the CMIP5 Task Force of the US 103 

National Oceanic and Atmospheric Administration (NOAA) Modeling Analysis and 104 

Prediction Program (MAPP).  105 

The outline of this paper is as follows. In Section 2, the CMIP5 models and 106 

observational datasets used for this study are briefly described. In Section 3, we focus on 107 
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examining how well the summer mean state and the leading ISV mode over the ENP are 108 

simulated by the sixteen CMIP5 GCMs. We further analyze the projected changes in 109 

characteristics of ENP ISV in future climate based on simulations from four GCMs under the 110 

RCP8.5 projection scenario. Finally, a summary is presented in Section 5. 111 

 112 

2. Model, Datasets, and Approaches 113 

2.1 CMIP5 Models  114 

The CMIP5 experiments were conducted with more than 50 climate models 115 

representing 20 modeling groups with the aim of furthering our understanding past and future 116 

climate change in key areas of uncertainty (Taylor et al. 2012). In this study, simulations 117 

from sixteen atmosphere-ocean GCMs (AOGCMs) using a “historical” scenario are analyzed 118 

for the period of 1981-2005 to explore model fidelity in representing ENP ISV in current 119 

climate. The historical forcings used to generate these runs include estimates of changes in 120 

atmospheric composition from natural and anthropogenic sources, volcanoes, greenhouse 121 

gases and aerosols, as well as changes in solar output and land cover. The model names, 122 

institutes, and horizontal resolutions of the sixteen AOGCMs used in our study are listed in 123 

Table 1. Additionally, simulations from four GCMs under the RCP8.5 projection scenario for 124 

the period of 2076-2099 are analyzed to examine projected changes in the ENP ISV in future 125 

climate. The main variables analyzed in this study include precipitation, surface latent heat 126 

flux, and 850hPa winds.  127 

2.2 Observational datasets  128 

Rainfall observations are based on the Tropical Rainfall Measuring Mission (TRMM, 129 

version 3B42 V6; Huffman et al. 1995) precipitation dataset during the period from 1998 to 130 

2010. TRMM 3B42 rainfall is a global precipitation product based on multi-satellite and rain 131 
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gauge analyses. It provides precipitation estimates with 3-hourly temporal resolution on a 132 

0.25-degree spatial resolution grid in a global belt between 50oS and 50oN.  Daily wind fields 133 

during the period of the TRMM rainfall observations are obtained from the recent European 134 

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis, e.g., ERA-Interim (Dee 135 

et al. 2011; hereafter ERA-I reanalysis), which have a horizontal grid resolution of 1.5o by 136 

1.5o. Daily estimates of global latent heat flux fields on a one-degree grid generated by the 137 

Woods Hole Oceanographic Institution (WHOI) Objectively Analyzed air-sea Fluxes 138 

(OAFlux) Project (Yu et al. 2008) are also analyzed to validate model latent heat flux 139 

patterns. The OAFlux product is determined from using the best-possible estimates of flux-140 

related surface meteorology and state-of-the-art bulk flux parameterizations (Yu et al. 2008). 141 

Several satellite products are utilized in the OAFlux synthesis, including wind speed 142 

retrievals from both scatterometer (QuikSCAT) and radiometer (SSM/I, Special Sensor 143 

Microwave Imager; and AMSR-E, Advanced Microwave Scanning Radiometer - Earth 144 

Observing System) microwave remote sensing, and SST daily high-resolution blended 145 

analysis by Reynolds et al. (2007), as well as a near-surface humidity product that was 146 

derived from SSM/I column water vapor retrievals (Chou et al. 2001). 147 

A common period of 1998-2010 is used for the observations due to the relatively short 148 

record of TRMM rainfall dataset. In addition, all daily variables based on both observations 149 

and model simulations were interpolated to a common 2.5o by 2.5o grid system. 150 

3. Simulations of the ENP ISV in CMIP5 GCMs under a historical scenario 151 

3.1 Summer Mean State 152 

In this part of the study, model fidelity in representing the summer mean state over the 153 

ENP and adjacent regions is first assessed by analyzing output from sixteen CMIP5 GCMs 154 
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under the “historical” forcing scenario. Figure 1 displays summer mean (May-October) 155 

rainfall and 850hPa winds based for observations and the GCM simulations. Observed 156 

summer mean rainfall (Fig. 1a) is largely characterized by an elongated rain belt along the 157 

ENP ITCZ near 10oN, extending into the North American monsoon (NAM) region along the 158 

Sierra Madre Occidental off the Gulf of California. A rainfall maximum center over northern 159 

South America is also present. In conjunction with this rainfall pattern, a prominent feature in 160 

the observed 850hPa wind fields over the ENP is the convergent flow onto the ITCZ, 161 

namely, the northeasterly winds to the north, and the southeasterly winds and cross-162 

equatorial flow to the south of the ITCZ. It is noteworthy that very weak winds at 850hPa are 163 

largely observed over the far eastern portion of the ENP where the maximum summer rainfall 164 

resides, and even includes a westerly component. At the surface, southwesterly mean winds 165 

occur in the region of the warm pool precipitation maximum (not shown), a basic state flow 166 

that has been argued to be important for the dynamics of ISV in this region given its 167 

influence on the sign of flux anomalies for a given signed surface wind anomaly (e.g. 168 

Maloney and Esbensen 2007).   169 

All the GCMs generally capture the bulk features of the ITCZ rain belt, the NAM, and 170 

rainfall over the South America, as well as associated 850hPa wind patterns. Note that daily 171 

850hPa wind data based on historical simulations from CCSM4 and HadGEM2_ES were not 172 

available at the CMIP5 data portal at the time of analysis. Significant model deficiencies are 173 

also discernible. In several GCMs, the rainfall maximum along the ENP ITCZ is displaced to 174 

the west side of the ENP rather than the far eastern part of the ENP as in the observations, 175 

The models that display this bias include CCSM4, GFDL_ESM2M, INMCM4, two 176 

IPSL_CM5A GCMs, two MIROC_ESM GCMs, and Nor_ESM1_M. Meanwhile, the 177 

amplitude of mean rainfall, particularly over the coastal region near Central America, is 178 
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overestimated in several GCMs, which could be due in part to the relatively coarse 179 

resolutions in these GCMs that may create difficulties in resolving the fine-scale topographic 180 

features near the coast. While more objective evaluations of mean rainfall and 850hPa wind 181 

patterns in these GCMs will be illustrated in Fig. 2, it is worth mentioning that obvious 182 

deficiencies in simulated 850hPa zonal wind patterns over the ENP ITCZ along 10oN are 183 

apparent in Fig. 1 in many GCMs. In contrast to relatively weak easterly, or even westerly, 184 

winds at 850hPa over the ENP ITCZ in the observations as shown in Fig. 1a, strong easterly 185 

winds are detected in almost half of the sixteen GCMs analyzed. Table 2 illustrates the 186 

domain averaged summer mean zonal wind at 850hPa over the ENP ITCZ region (140oW-187 

80oW; 5oN-25oN) in observations and the GCM simulations. As will be further illustrated 188 

below, the biases in representing the summer mean low-level winds over the ENP in a GCM 189 

appear to be closely linked to the model deficiencies in simulating local intraseasonal 190 

variability.  191 

Figure 2 presents an objective assessment of the summer mean state simulated in each 192 

CMIP5 GCM by illustrating Taylor diagrams for rainfall and wind patterns over the ENP 193 

domain (150oW-80oW; 5oS-30oN). Taylor diagrams provide a way of quantifying how 194 

closely a simulated pattern matches its observational counterpart in terms of their pattern 195 

correlation, centered root-mean-square (RMS) difference, and the amplitude of their standard 196 

deviations (Taylor 2001). For rainfall patterns (Fig. 2a), while the two Had_GEM2 models 197 

(Had_GEM2_CC and Had_GEM2_ES) display the largest pattern correlations against the 198 

observations with correlation scores of about 0.93, the MRI_CGCM3 has the smallest RMS 199 

due to its better skill in simulating the spatial standard deviations of summer mean rainfall 200 

over the ENP. In addition, four other GCMs including CSIRO_mk3, MPI_ESM_LR, 201 

CanESM2, and CNRM_CM5 also exhibit relatively good pattern correlation scores 202 
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compared to other GCMs. Performance in simulating summer mean rainfall in a GCM is 203 

largely consistent with that for the circulation pattern at 850hPa. In general, models with 204 

relatively higher skill in simulating the summer mean rainfall pattern also exhibit better skill 205 

for the 850hPa wind pattern, particularly in the zonal wind component (Fig. 2b and 2c).  206 

Nevertheless, less defined stratification in model skill among the GCMs is found in simulated 207 

summer mean rainfall patterns than for winds.  208 

Figure 3 illustrates the probability distribution function (PDF) of summer rainfall as a 209 

function of rainrate over the ENP ITCZ region (130-90oW; 5-15oN) based on both TRMM 210 

observations and GCM simulations. These PDFs were derived based on summertime (May-211 

October) daily mean rainfall at each 2.5o×2.5o gridpoint during the periods of 1981-2005 and 212 

1998-2010 for model simulations and observations, respectively. Results based on TRMM 213 

observations indicate that the largest frequency of daily mean rainfall occurs at 10 mm day-1 214 

(Fig. 3a; note that rainrate on the x-axis in Fig. 3 is on a log scale). The frequency of 215 

occurrence markedly decreases when rainrate increases from 10 to 100 mm day-1. In contrast, 216 

the decrease in the frequency is more gradual as rain rate decreases from 10 mm day-1 to very 217 

light rain. The frequency of occurrence peak at about 10mm day-1 as illustrated in TRMM is 218 

generally captured in most of the GCMs. Nevertheless, the observed rainfall PDF shape is 219 

reasonably well captured by only a very limited number of models, including 220 

HadGEM2_CC, HadGCM_ES, and MRI_CGCM3. Precipitation in most of the other GCMs 221 

tends to fall in a narrow rain-rate range centered at 10 mm day-1. The observed frequency in 222 

both very heavy and light rainfall regimes is generally underestimated in these models. An 223 

extreme example is found in the INMCM4 (Fig. 3j), in which the rainfall over the ENP 224 

largely occurs in a range between 0.1 and 32 mm day-1, in contrast to the much broader PDF 225 

in the observations. Also worth noting is that, in addition to a peak of 10 mm day-1, modest 226 
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secondary frequency peaks are also discerned around the rain rate of 1 mm day-1 in the two 227 

HadGEM2 models (Figs. 3h and i).  The causes of this bimodal distribution are not yet clear.     228 

3.2 Intraseasonal Variability over the ENP 229 

In this section, we proceed to examine how intraseasonal variability over the ENP is 230 

simulated in CMIP5 GCMs. Figure 4 illustrates general intraseasonal variability amplitude in 231 

both observations and CMIP5 GCM simulations by showing the standard deviations (STDs) 232 

of 10-90-day band-pass filtered summertime (May-October) rainfall in each dataset. In 233 

TRMM, intraseasonal variability in precipitation generally maximizes in regions of high 234 

mean precipitation (Figure 2), although intraseasonal variability is slightly displaced toward 235 

the Mexican coast relative to the mean precipitation distribution. ISV in the ENP is greatly 236 

underestimated in INMCM4 and two MIROC_ESM models. Relatively weak ISV 237 

amplitudes are also noticed in CanESM2, GFDL_ESM2M, and nor_ESM1. In contrast, too 238 

strong of ISV is simulated in the two HadGEM2 and two IPSL_CM5A GCMs. Meanwhile, 239 

maximum ISV activity is centered over the western part of the ENP in CCSM4, 240 

GFDL_ESM2M, INMCM4, two IPSL_CM5A GCMs, and Nor_ESM1_M, rather than over 241 

the eastern part of the ENP as in the observations. This analysis indicates that the ability of 242 

models to capture the overall level of intraseasonal variability in the east Pacific varies 243 

widely across models. In addition, the ability of models to simulate intraseasonal wind 244 

variance generally tracks their ability to simulate intraseasonal precipitation variance (not 245 

shown).  246 

Next, in order to identify the leading ISV modes over the ENP in both observations and 247 

GCM simulations, complex empirical orthogonal function (CEOF) analysis was conducted 248 

for rainfall fields following the method of Maloney et al. (2008). In CEOF analysis, the 249 

covariance matrix is constructed from the complex analytic function at each grid point 250 
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consisting of the filtered time series of data plus i times its quadrature function, where the 251 

quadrature function is determined through a Hilbert transform. The resulting CEOFs are 252 

complex, and thus an advantage of CEOF analysis is that a propagating signal can be 253 

represented by one CEOF (Barnett 1983; Horel 1984; Maloney et al. 2008), rather than a 254 

quadrature pair of EOFs as in the traditional EOF approach or the extended EOF (EEOF) 255 

method as adopted by Jiang et al. (2011) to identify the two leading ENP ISV modes. 256 

Considering dominant influences of the 40-day ISV mode, as well as greater model 257 

uncertainty in representing the observed QBM over the ENP particularly in relatively coarse 258 

resolution GCMs as suggested by Jiang et al. (2011), in the present study we will focus on 259 

examining CMIP5 model fidelity in representing the 40-day ISV mode over the ENP. Prior 260 

to the CEOF analyses, daily rainfall fields based on both TRMM observations and GCM 261 

simulations are subject to 30-90-day band-pass filtering. CEOF analyses are then applied to 262 

daily rainfall anomalies from the model and observational datasets over the ENP domain 263 

(140oW-80oW; 5oN-25oN) during boreal summer (June-September). 264 

Spatial patterns of the amplitude of the first CEOF mode (CEOF1) based on TRMM 265 

observations and GCM simulations are illustrated in Figure 5. Similarly to the behavior 266 

illustrated by Maloney et al. (2008), the maximum amplitude of the observed rainfall CEOF1 267 

occurs over the far eastern part of the ENP (Fig. 5a). The spatial amplitude of the CEOF1 is 268 

rather weak in CanESM2, CCSM4, GFDL_ESM2M, INMCM4, two MIROC_ESM models, 269 

and Nor_ESM1_M, in general agreement with the weak amplitude in the STD patterns of 10-270 

90-day band-pass filtered rainfall anomalies in these models shown in Fig. 4. A westward 271 

shift of the maximum amplitude relative to the observations is again evident in CCSM4, 272 

INMCM4, and the two IPSL_CM5A models. While the two HadGEM2 models well-capture 273 

the observed spatial distribution of the amplitude pattern, the CEOF1 amplitudes are stronger 274 
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than observed. The MPI_ESM_LR, CNRM_CM5, and CSIRO_Mk3 models produce 275 

approximately the correct amplitude and spatial distribution of the leading CEOF. 276 

Figure 6 presents observed and GCM-simulated spatial phase patterns of the CEOF1 277 

mode over the ENP. To make the spatial phase patterns of the CEOF1 based on the 278 

observations and simulations comparable to each other, the spatial phase of CEOF1 based on 279 

each dataset is adjusted by setting the domain averaged phase to be zero over a the region 280 

110oW-100oW, 10-15oN. Contours of spatial patterns based on each dataset are only 281 

displayed where local variances explained by CEOF1 exceed 8%. Note that the direction of 282 

propagation associated with the CEOF1 is indicated by the gradient of the spatial phase. 283 

Figure 6a illustrates the spatial phase pattern of the observed rainfall CEOF1 after the phase 284 

adjustment. In accord with previous studies, the observed leading ISV mode over the ENP 285 

associated with the CEOF1 largely exhibits eastward propagation, although a northward 286 

component to propagation is also evident (e.g., Jiang and Waliser 2008; Maloney et al. 2008; 287 

Jiang et al. 2011).   288 

The observed northeastward propagation associated with the leading ISV mode over the 289 

ENP as illustrated by the spatial phase pattern based on TRMM is reasonably well captured 290 

in several models, including CNRM_CM5, CSIRO_Mk3, GFDL_ESM2M, HadCM3, 291 

HadGEM2_CC, HadGEM2_ES, MPI_ESM_LR, and MRI_CGCM3, although the 292 

northward-propagating component in the two HadGEM2 models tends to dominate the 293 

eastward component. In contrast to the eastward propagation in the observations, westward 294 

propagation associated with CEOF1 is seen in several GCMs, including CanESM2, 295 

INMCM4, two IPSL_CM5A GCMs, and the two MIROC_ESM models.  296 

The fidelity in simulating the leading ENP ISV mode by each CMIP5 model is then 297 

objectively assessed by calculating the pattern correlation of the simulated rainfall CEOF1 298 
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against its observed counterpart. To increase sampling when assessing the model skill scores, 299 

spatial patterns of rainfall anomalies associated with the CEOF1 based on both observations 300 

and GCM simulations are derived at two quadratic phases by multiplying the CEOF1 301 

amplitude by the cosine and sine of the spatial phase on each grid point, respectively. Pattern 302 

correlations between the observed and simulated CEOF1 anomalous rainfall patterns over the 303 

ENP domain are then calculated at both of these two quadratic phases. A final pattern 304 

correlation score for a particular model in simulating the spatial pattern of the CEOF1 is 305 

derived by averaging these two pattern correlation coefficients. Figure 7 shows pattern 306 

correlation scores in depicting the CEOF1 rainfall pattern (x-axis) versus ENP domain 307 

averaged (5o-25oN; 140-80oW) CEOF1 amplitude relative to the observed counterpart (y-308 

axis) in each model simulation. It is shown that a majority of the CMIP5 models tend to 309 

underestimate the amplitude of the leading ENP ISV mode associated with the rainfall 310 

CEOF1, except for CNRM_CM5, MPI_ESM_LR, and two versions of Had_GEM2. Also 311 

note that seven GCMs, including MRI_CGCM3, MPI_ESM_LR, CSIRO_Mk3, 312 

CNRM_CM5, and three versions of Hadley Center GCMs (i.e., Had_CM3, Had_GEM2_CC, 313 

Had_GEM2_ES) exhibit relatively high skill scores in capturing the CEOF1 patterns with 314 

correlation scores exceeding 0.75. Figure 7 succinctly illustrates that the CMIP5 models 315 

exhibit widely different ability to simulate intraseasonal variability in the ENP.  316 

To show an example of how the spatial evolution associated with the leading ENP ISV 317 

modes are simulated in GCMs, Figure 8 illustrates the evolution of patterns of anomalous 318 

rainfall and 850hPa winds associated the ENP ISV in the observations and the five GCMs 319 

that exhibit relatively better pattern correlation scores in representing the observed CEOF1 as 320 

illustrated in Fig. 7. The evolution of anomalous rainfall and 850hPa winds in both 321 

observations and model simulations are derived by lag-regression against rainfall anomalies 322 
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averaged over a small domain over the ENP (110-100oW; 7.5-15oN; see the small red box in 323 

the top panel of Fig. 8a). Note that 30-90-day band-pass filtering was applied to all these 324 

fields prior to calculation of the regression patterns. In agreement with previous studies (e.g., 325 

Maloney and Esbensen 2007; Jiang and Waliser 2008; Jiang et al. 2011), Fig. 8a largely 326 

captures the main features of observed 40-day ISV mode over the ENP. An eastward-327 

propagating signal that impinges from the west is clearly seen, which may be linked to the 328 

MJO over the Indian Ocean / Western Pacific. Enhanced convection over the ENP is found to 329 

be associated with anomalous low-level southwesterly winds. These prominent features of 330 

the observed leading ISV mode over the ENP are largely captured in these several GCMs 331 

that produce good intraseasonal simulations based on Figure 7.  332 

It is noteworthy that the models with relatively better skill in representing the leading 333 

ENP ISV mode also tend to exhibit better skill at simulating summer mean rainfall and 334 

850hPa wind patterns (c.f. Fig. 1 and Fig. 7). Further inspection of the summer mean 850hPa 335 

zonal wind (Table 2) illustrates that a common feature among these GCMs with relatively 336 

higher skill in simulating ENP ISV is the presence of westerly or very weak easterly mean 337 

winds (less than 1.5 m s-1) over the ENP warm pool region, as in the observations. In 338 

contrast, most GCMs with relatively poor skill in simulating ISV exhibit a stronger easterly 339 

summer mean low-level flow (greater than 4 m s-1). In Fig. 7, models with a westerly or very 340 

weak easterly summer mean 850hPa winds over the ENP are labeled with “square” marks, 341 

while those with strong easterly summer mean winds with “circle” marks. (Note that daily 342 

wind data were not available from the CMIP5 data portal at the time of this analysis for the 343 

two models with “diamond” marks.) A close association between summer mean 850hPa 344 

zonal wind and model performance in representing the leading ENP ISV mode is readily seen 345 

in Fig. 7.  All the GCMs (except HadGEM2_ES due to missing wind data) that show pattern 346 
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correlation scores of greater than 0.75 are characterized by westerly or weak easterly summer 347 

mean winds at 850hPa. Therefore, these results strongly suggest that a realistic representation 348 

of the mean state could be conducive for improved simulations of the ENP ISV which has 349 

also been discussed for the MJO simulations over the western Pacific and Indian Ocean (e.g., 350 

Inness and Slingo 2003; Sperber et al. 2005; Kim et al. 2009; Kim et al. 2011).  351 

One hypothesis for the close linkage between model performance in simulating the ISV 352 

and the low-level mean flow over the ENP is that a realistic mean state could produce the 353 

correct sign of surface flux anomalies relative to intraseasonal precipitation, which helps 354 

destabilize local intraseasonal disturbances (e.g. Maloney and Esbensen 2005; hereafter 355 

ME05). As seen in Fig. 8, the amplitude of anomalous southwesterly winds at 850hPa 356 

associated with enhanced convection of the leading ISV mode over the ENP is about 2 m s-1. 357 

Therefore, under a westerly or weak easterly environmental summer mean flow, this 358 

anomalous southwesterly ISV wind will facilitate a positive feedback for the growth of ISV 359 

disturbances. Namely, stronger ISV convection over the ENP will lead to increased low-level 360 

southwesterly winds; this increased southwesterly low-level wind will further lead to 361 

enhanced surface latent heat fluxes (LHFX) under westerly or weak easterly flow, thus 362 

supporting tropospheric moisture anomalies and leading to intensification of ISV convection. 363 

However, with the presence of a strong mean easterly low-level wind, southwesterly 364 

anomalous wind in response to enhanced ISV convection will lead to a decrease of the total 365 

easterly winds, thus reducing LHFXs and dampening the existing ISV convective 366 

disturbances. Recently, Rydbeck et al. (2012) noted that easterly mean wind biases in a 367 

regional climate model were responsible for the inability of that model to sustain a local 368 

model intraseasonal variability over the east Pacific warm pool, creating the incorrect sign of 369 
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the latent heat flux anomalies relative to anomalous precipitation and column water vapor 370 

anomalies. 371 

In order to substantiate the above hypothesis, we further analyze LHFX anomalies 372 

associated with the ISV over the ENP. Similar to Fig. 8, Figure 9 illustrates simultaneous 373 

regression patterns (i.e., day 0) of 30-90-day band-pass filtered LHFX (shaded) and 850hPa 374 

wind anomalies (vectors) against rainfall anomalies over the ENP box region based on both 375 

observations and GCM simulations. (Note that since results for the two versions of 376 

HadGEM2, IPSL_CM5A, and MIROC_ESM models greatly resemble each other, only 377 

results based on one version of these GCMs are presented in Fig. 9. Also, daily surface latent 378 

heat flux data were not available for CCSM4 and HadGCM3, and so results from these 379 

models are not shown in Fig. 9.) In agreement with previous findings by ME05, enhanced 380 

LHFX anomalies are found over convectively active regions of the ISV (c.f., Fig. 9a and Fig. 381 

8a at day 0). Meanwhile, maximum positive latent heat flux anomalies tend to be collocated 382 

with the maximum anomalous wind speed (Fig. 9a), further suggesting the potentially critical 383 

role of anomalous wind to the surface LHFX anomalies as proposed by ME05. Thus, this 384 

configuration of anomalous surface wind, LHFX, and convection represents a positive 385 

feedback process to sustain the ENP ISV convection as previously described. These features 386 

are reasonably well simulated in CNRM_CM5, CSIRO_Mk3, HadGEM2_CC, 387 

MPI_ESM_LR, and MRI_CGCM3, consistent with relatively better skill in simulating ISV 388 

in these GCMs. Much stronger amplitudes in LHFX anomalies compared to observations are 389 

noted in CNRM_CM5 and HadGEM2_CC, in agreement with the stronger ISV convection 390 

and associated wind anomalies in these two models. On the other hand, anomalous LHFX 391 

patterns over the ENP simulated in several other GCMs are not as well organized as in the 392 

observations, including GFDL_ESM2M, INMCM4, IPSL_CM5A_LR, MIROC_ESM, and 393 
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nor_ESM1_M. As previously mentioned, these models are characterized by strong easterly 394 

summer mean flow at 850hPa over the ENP, and also exhibit poor skill in representing the 395 

ENP ISV in general. Taking INMCM4 as an example (Fig. 9g), although this model 396 

reasonably captures the low-level anomalous wind pattern corresponding to enhanced 397 

convection over the ENP (c.f., vectors in Fig. 9a and 9g), due to the presence of the easterly 398 

mean flow in the model, negative (positive) LHFX anomalies are found to be associated with 399 

westerly (easterly) wind anomalies. As a result, the strong negative LHFX anomalies over 400 

ISV convectively active regions will lead to a weakening of the initial ISV convection, thus 401 

providing a negative feedback to the ISV growth rate. While surface wind speed data are 402 

needed for an accurate diagnosis of the surface LHFX budget, the results presented in this 403 

part strongly suggest that a realistic mean flow in the model will greatly benefit its simulation 404 

of the ENP ISV through a realistic representation of the anomalous LHFX pattern and its 405 

feedback to ISV convection.  406 

We cannot discount other reasons for why some models produce more realistic east 407 

Pacific intraseasonal variability than others, including improved convection 408 

parameterizations (e.g. Kim et al. 2009; Jiang et al. 2011); nor can we discount that the 409 

improved mean state is a result of improved intraseasonal variability that rectifies onto the 410 

low-level mean winds. However, our results at least strongly suggest an important role for a 411 

realistic depiction of low-level mean winds and their modulation of surface latent heat flux 412 

anomalies in producing more realistic intraseasonal variability in climate models, a result 413 

also supported by comparing the results of Small et al. (2011) and Rydbeck et al. (2012) in 414 

which the same regional coupled model run with different mean states is shown to produce 415 

substantially different east Pacific intraseasonal variability. We note no obvious relationship 416 

between horizontal resolution (Table 1) and the ability to produce realistic intraseasonal 417 
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variability. For example, CCSM4 is among one of the higher resolution models, but 418 

simulates variability very unrealistically; whereas HadCM3 is one of the coarsest, but 419 

produces one of the best variability simulations. This is largely in agreement with a previous 420 

study by Jiang et al. (2011),  in which they demonstrated that GCM fidelity in simulating the 421 

40-day ENP ISV mode seems not sensitive to model horizontal resolution, whereas increased 422 

resolution could be helpful for representing the QBM mode over the ENP.   423 

4. Future Projection of the ISV over the ENP 424 

In this section, future changes in characteristics of the ENP ISV are further explored by 425 

analyzing output from one model with relatively poor simulation of the ISV (CCSM4) and 426 

three models with relatively good ISV (HadGEM2_CC, HadGEM2_ES, MPI_ESM_LR) for 427 

the period of 2076-2099 under the RCP8.5 projection pathway.  428 

Figure 10 illustrates projected changes in summer mean rainfall patterns over the ENP 429 

for the period of 2076-2100 under the RCP8.5 scenario relative to the present day climate 430 

(1981-2005) based on the four GCM simulations. Simulations based on these four GCMs 431 

exhibit good agreement with each other in that summertime precipitation is projected to be 432 

reduced in the northern part of the ENP warm pool and the Caribbean. Precipitation is 433 

projected to be enhanced over the southern part of the ENP between 5oN and 10oN, 434 

particularly in simulations based on CCSM4, HadGEM2_CC, HadGEM2_ES, suggesting a 435 

strengthening and southward shift of the ENP ITCZ. The positive rainfall change in 436 

MPI_ESM_LR is displaced slightly northward relative to that in the other three GCMs, and 437 

is also smaller in amplitude than both Hadley Center models. This projected change in 438 

summertime rainfall over the ENP and adjacent regions is generally in agreement with results 439 

derived based on a 15-member model ensemble as described in Part III of the overview paper 440 

the summarizes the NOAA CMIP5 Task Force’s efforts in assessing the North American 441 

climate in CMIP5 models (Maloney and coauthors 2012). These results are also consistent 442 
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with changes in mean summertime precipitation in the east Pacific and Caribbean 443 

documented for CMIP3 models (e.g., Neelin et al. 2006). 444 

Figure 11 further demonstrates projected changes in rain rate PDFs under the RCP8.5 445 

scenario in the four GCMs. The background gray bars in each panel denote rainfall PDFs 446 

over the ENP during the period of 1981-2005, which are duplicated from Fig. 3, while green 447 

bars represent rainfall PDF changes in the future climate relative to that under the current 448 

climate (see axes on the right). Relative to today’s climate, CCSM4 results suggest that fewer 449 

rain rate events of 10 mm day-1, more rain rate events between 0.1 and 1 mm day-1, and 450 

slightly more very heavy rainfall events (~ 100 mm day-1) will occur in future climate. The 451 

other three GCMs (MPI_ESM_LR, HadGEM2_CC, HadGEM2_ES) project an increase in 452 

the frequency of heavy rain ( > 10 mm day), and a decrease in occurrence of light rain. Recall 453 

that MPI_ESM_LR, HadGEM2_CC, and HadGEM2_ES produced better simulations of 454 

rainfall ISV in the current climate relative to CCSM4 (Section 3). 455 

Next, we examine how ISV over the ENP changes in RCP8.5 based on the four 456 

aforementioned GCM simulations. Figure 12 illustrates differences in STD patterns of 10-90-457 

day band-pass filtered rainfall between the two periods of 2076-2100 and 1981-2005. 458 

Largely mimicking the mean precipitation changes shown in Fig. 10, a significant increase in 459 

rainfall STD between 5oN and 10oN is noted in the ENP for all models. Significance is 460 

determined at the 95% confidence level using a Chi-squared test. Interestingly, some of these 461 

models also exhibit significant decreases in intraseasonal variability in the northern part of 462 

the ENP off the coast of Mexico/Central America and the Caribbean.  463 

In Figure 13, we illustrate the spatial amplitude of the leading CEOF mode of 464 

summertime rainfall over the ENP simulated in the four GCMs for the period of 2076-2100. 465 

To facilitate the comparison, the spatial amplitude of CEOF1 derived from historical 466 

simulations in these four models is also shown in Fig. 13; the changes in the CEOF1 467 

amplitude between the two periods are displayed in the lower panels. Largely consistent with 468 
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the projected changes in patterns of summer mean rainfall and the STD of 10-90-day filtered 469 

rainfall, amplitude increases of the leading CEOF are exhibited on the southern fringe of the 470 

original CEOF amplitude maximum in all four GCMs for the RCP8.5 scenario. Changes in 471 

the spatial phase of the leading CEOF mode among models are rather small, and thus are not 472 

shown here.             473 

5. Summary 474 

As one of the dominant forms of the tropical atmospheric variability, intraseasonal 475 

variability (ISV) over the eastern north Pacific (ENP) exerts pronounced influences on 476 

regional weather and climate, and hence provides a primary source for extended range 477 

climate prediction. Moreover, as GCMs have become essential tools for prediction and 478 

projections of future climate, current model deficiencies in representing this fundamental 479 

component of atmospheric variability leave us greatly disadvantaged in climate change 480 

studies. As a part of collective efforts coordinated by the NOAA MAPP program’s CMIP5 481 

Task Force to assess North American climate simulated in CMIP5 models, we have 482 

evaluated model fidelity at representing ENP ISV in sixteen GCMs participating in the 483 

CMIP5 project. Among the sixteen CMIP5 GCMs examined in this study, only seven GCMs 484 

capture the spatial pattern of the leading ISV mode over the ENP reasonably well, although 485 

even these several GCMs exhibit biases in simulating ISV amplitude.  486 

Analyses further indicate that model fidelity in representing the ENP ISV in a GCM is 487 

closely associated with its ability to simulate a realistic summer mean state. The presence of 488 

a westerly or very weak easterly low-level mean wind over the ENP warm pool region in a 489 

model, as in the observations, appears conducive to more realistic simulation of east Pacific 490 

ISV. One hypothesis is that a realistic mean state could produce the correct sign of surface 491 

flux anomalies relative to the ISV convection, which helps to destabilize local intraseasonal 492 

disturbances through a positive feedback between convection and wind-induced surface 493 
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latent heat fluxes as proposed by Maloney and Esbensen (2005). When strong easterly mean 494 

low-level flow is present over the ENP in the biased models, southwesterly wind anomalies 495 

in response to the enhanced convection will lead to local negative latent heat flux anomalies, 496 

thus weakening the existing ISV disturbances.  This hypothesis does not rule out other 497 

reasons for better variability in some models, such as improved parameterizations of deep 498 

convection.  499 

Projected changes in the characteristics of ENP ISV under the RCP8.5 projection 500 

pathway are also explored in simulations from four CMIP5 GCMs. Consistent with the future 501 

change in the summer mean rainfall pattern, analyses based on these four CMIP5 models 502 

project that the amplitude of ISV will be enhanced over the southern part of the ENP between 503 

5oN and 10oN, while reduced over the northern ENP off the coastal region of Mexico / 504 

Central America and the Caribbean.  505 

 506 
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List of Figures 630 

Figure 1 Observed and simulated summer mean (May–October) rainfall patterns (shaded; 631 

see color bar at the bottom) and 850hPa winds (vectors; m s-1). Observed rainfall and 632 

winds are based on TRMM and ERA-I reanalysis for the period of 1998-2010, while 633 

model mean state is derived from historical simulations based on GCMs for the period 634 

of 1981-2005.  635 

Figure 2 Taylor diagrams for summer mean (May-September) (a) precipitation, (b) 850hPa 636 

u-wind, (c) 850hPa v-wind over the ENP (150oW-80oW; 5oS-30oN) simulated in 637 

CMIP5 GCMs.  638 

Figure 3 The probability distribution function (PDF) of summer rainfall over the ENP (130-639 

90oW; 5-15oN) as a function of rainrate based on observations and GCM simulations. 640 

The observed PDF is also duplicated in panels (b)-(q) with purple lines. The rainrate on 641 

the x-axis is plotted on a log scale.  642 

Figure 4 Standard deviations of 10-90-day band-pass filtered summertime (May–September) 643 

rainfall based on observations and CMIP5 model simulations (unit: mm day-1).  644 

Figure 5 Spatial distribution of amplitude of the CEOF1 mode of 30-90-day band-pass 645 

filtered rainfall during boreal summer (June-September) over the ENP based on 646 

observations and model simulations. 647 

Figure 6 Same as in Fig. 5, but for spatial distribution of phase of the summertime rainfall 648 

CEOF1 mode over the ENP. The spatial phase based on each dataset is adjusted by 649 

setting the domain averaged value to be zero over the box region of 110oW-100oW, 10-650 

15oN. Contours are only displayed over grids with local variances explained by CEOF1 651 

exceeding 8%. 652 

Figure 7 X-axis: Pattern correlation coefficients of the CEOF1 mode between TRMM 653 

observations and CMIP5 GCM simulations. Y-axis: Relative amplitudes of CEOF1 in 654 

model simulations to the observed counterpart. Both pattern correlations and 655 
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amplitudes are derived by averaging over the area of 5oN-25oN, 140oW-80oW where 656 

the active ISV is observed. The black “star” mark represents the TRMM observations.  657 

Models with “square” marks display westerly or weak easterly (<1.5 m s-1) summer 658 

mean wind at 850hPa, while strong easterly winds (> 4 m s-1) are noted in models with 659 

“circle” marks. Wind fields are not available in the data portal at the time of this 660 

analysis from the two GCMs with “diamond” marks.    661 

Figure 8 Evolution of anomalous rainfall (shaded) and 850hPa winds (vectors) associated 662 

with the dominant ISV mode over the ENP as derived by lag-regressions against the 663 

corresponding rainfall anomalies over 100-110oW; 7.5oN-15oN (see the red box in the 664 

upper left panel) based on observations and CMIP5 model simulations. 665 

Figure 9 Simultaneous regression patterns (e.g., day 0) of anomalous surface latent heat flux 666 

(shaded) and 850hPa winds (vectors) against the corresponding rainfall anomalies over 667 

the ENP box (100-110oW; 7.5oN-15oN) in observations and model simulations.  668 

Figure 10 Projected changes in summer mean rainfall patterns between the period of 2076-669 

2099 under RCP 8.5 scenario and 1981-2005 based on historical simulations. 670 

Figure 11 (Grey shading with left axes): The PDF of summer rainfall as a function of rain 671 

rate over the ENP (130-90oW; 5-15oN) based on historical (1981-2005) from four 672 

GCMs - CCSM4, Had_GEM2_CC, Has_GEM2_ES, and MPI_ESM_LR (reproduced 673 

from Fig. 3). (Green shading with right axes): Changes in rainfall PDFs in future 674 

projections (2076-2099) under the RCP8.5 projection scenario. The precipitation rate 675 

on x-axis is plotted on a log scale.  676 

Figure 12 Difference in the standard deviation of the 10-90 day bandpass filtered 677 

precipitation in the CCSM4, MPI_ESM, HAD_GEM2_CC, and HAD_GEM_ES 678 

models. Units are mm day-1. Stippling shows where the variance difference is 679 

significantly different from zero at the 95% confidence level using a Chi-squared test.  680 

Figure 13 Spatial distributions of CEOF1 amplitude of summer rainfall over the ENP based 681 

on four CMIP5 models in historical simulations (upper panels) and future projections 682 

under the RCP 8.5 scenario (middle panels) and their differences (lower panels)  683 
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Table 1. CMIP5 models analyzed in this study. 684 

Model Name	 Modeling Center	
Horizontal Resolution 
of Atmospheric Model 

(lon × lat deg)	
Scenario 

CanESM2	 Canadian Center for Climate Modeling and Analysis 2.8 × 2.8 “historical” 

CCSM4	 US National Center for Atmospheric Research 1.25 × 1 “historical” , “RCP8.5” 

CNRM-CM5	 National Centre for Meteorological Research, France 1.4 × 1.4 “historical” 

CSIRO-MK3	
Commonwealth Scientific and Industrial Research 

Organization /Queensland Climate Change Centre of 
Excellence, AUS	

1.8 × 1.8	 “historical” 

GFDL-ESM2M	 NOAA Geophysical Fluid Dynamics Laboratory 2.5 × 2.0 “historical” 

HadCM3 
HadGEM2-CC 
HadGEM2-ES	

UK Met Office Hadley Centre	
3.7 × 2.5 

1.8 × 1.25 
1.8 × 1.25 

“historical” 
“historical”, “RCP8.5” 
“historical”, “RCP8.5” 

INMCM4	 Institute for Numerical Mathematics, Russia 2 × 1.5 “historical” 

IPSL-CM5A-LR 
IPSL-CM5A-MR	 Institute Pierre Simon Laplace, France	 3.75 × 1.8 

2.5 × 1.25	 “historical” 

MIROC-ESM 
MIROC-ESM-CHEM	

Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 
Marine-Earth Science and Technology, Japan	

1.4 × 1.4	 “historical” 

MPI-ESM-LR	 Max Planch Institute for Meteorology, Germany 1.9 × 1.9 “historical”, “RCP8.5” 

MRI-CGCM3	 Meteorological Research Institute, Japan 1.1 × 1.1 “historical” 

NorESM1-M	 Norwegian Climate Center, Norway 2.5 × 1.9 “historical” 

 685 

 686 

 687 

 688 

 689 

Table 2 Summer mean zonal wind speed at 850hPa over the ENP (140oW-80oW; 5oN-25oN; 690 

unit: m s-1) in observations and GCM simulations 691 

OBS  CanESM2  CCSM4 CNRM_CM5  CSIRO_Mk3 GFDL_ESM2M HadCM3 HadGEM2_CC  HadGEM2_ES

0.63  ‐4.02  n/a  ‐0.77  1.11 ‐4.2 ‐0.6 0.2  n/a

  INMCM4  IPSL_CM5A_LR  IPSL_CM5A_MR  MIROC_ESM MIROC_ESM_CHEM MPI_ESM_LR MRI_CGCM3  Nor_ESM1_M

  ‐6.5  ‐6.1  ‐6.6  ‐6.4 ‐5.9 0.42 ‐1.45  ‐9.2

 692 

 693 
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 694 

Figure 1 Observed and simulated summer mean (May–October) rainfall patterns (shaded; see 695 

color bar at the bottom) and 850hPa winds (vectors; m s-1). Observed rainfall and winds 696 

are based on TRMM and ERA-I reanalysis for the period of 1998-2010, while model 697 

mean state is derived from historical simulations based on GCMs for the period of 698 

1981-2005.  699 
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(a) Rain (b) u850

(c) v850

 704 

 705 

Figure 2 Taylor diagrams for summer mean (May-September) (a) precipitation, (b) 850hPa 706 

u-wind, (c) 850hPa v-wind over the ENP (150oW-80oW; 5oS-30oN) simulated in 707 

CMIP5 GCMs.  708 
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 714 

 715 

Figure 3 Grey bars: The probability distribution function (PDF) of summer rainfall over the 716 

ENP (130-90oW; 5-15oN) as a function of rainrate based on observations and GCM 717 

simulations. The observed PDF is also duplicated in panels (b)-(q) with purple lines. 718 

The rainrate on the x-axis is plotted on a log scale.  719 
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 720 

Figure 4 Standard deviations of 10-90-day band-pass filtered summertime (May–September) 721 

rainfall based on observations and CMIP5 model simulations (unit: mm day-1).  722 
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 724 
 725 

Figure 5 Spatial distribution of amplitude of the CEOF1 mode of 30-90-day band-pass 726 

filtered rainfall during boreal summer (June-September) over the ENP based on 727 

observations and model simulations. 728 
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 729 

Figure 6 Same as in Fig. 5, but for spatial distribution of phase of the summertime rainfall 730 

CEOF1 mode over the ENP. The spatial phase based on each dataset is adjusted by 731 

setting the domain averaged value to be zero over the box region of 110oW-100oW, 10-732 

15oN. Contours are only displayed over grids with local variances explained by CEOF1 733 

exceeding 8%. 734 
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 742 

 743 

Figure 7 X-axis: Pattern correlation coefficients of the CEOF1 mode between TRMM 744 

observations and CMIP5 GCM simulations. Y-axis: Relative amplitudes of CEOF1 in 745 

model simulations to the observed counterpart. Both pattern correlations and 746 

amplitudes are derived by averaging over the area of 5oN-25oN, 140oW-80oW where 747 

the active ISV is observed. The black “star” mark represents the TRMM observations.  748 

Models with “square” marks display westerly or weak easterly (<1.5 m s-1) summer 749 

mean wind at 850hPa, while strong easterly winds (> 4 m s-1) are noted in models with 750 

“circle” marks. Wind fields are not available in the data portal at the time of this 751 

analysis from the two GCMs with “diamond” marks.    752 
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Figure 8 Evolution of anomalous rainfall (shaded) and 850hPa winds (vectors) associated with the dominant ISV mode 
over the ENP as derived by lag-regressions against the corresponding rainfall anomalies over 100-110oW; 7.5oN-
15oN (see the red box in the upper left panel) based on observations and CMIP5 model simulations.	
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 768 

Figure 9 Simultaneous regression patterns (e.g., day 0) of anomalous surface latent heat flux 769 

(shaded) and 850hPa winds (vectors) against the corresponding rainfall anomalies over 770 

the ENP box (100-110oW; 7.5oN-15oN) in observations and model simulations. 	771 
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 780 

 781 

Figure 10 Projected changes in summer mean rainfall patterns between the period of 2076-782 

2099 under the RCP 8.5 projection scenario and 1981-2005 based on historical 783 

simulations. 784 
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 794 

Figure 11 (Grey shading with left axes): The PDF of summer rainfall as a function of rain 795 

rate over the ENP (130-90oW; 5-15oN) based on historical (1981-2005) from four 796 

GCMs - CCSM4, Had_GEM2_CC, Has_GEM2_ES, and MPI_ESM_LR (reproduced 797 

from Fig. 3). (Green shading with right axes): Changes in rainfall PDFs in future 798 

projections (2076-2099) under the RCP8.5 projection scenario. The precipitation rate 799 

on x-axis is plotted on a log scale.  800 
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	814 

	815 

	816 

Figure 12 Difference in the standard deviation of the 10-90 day bandpass filtered 817 

precipitation in the CCSM4, MPI_ESM, HAD_GEM2_CC, and HAD_GEM_ES 818 

models. Units are mm day-1. Stippling shows where the variance difference is 819 

significantly different from zero at the 95% confidence level using a Chi-squared test.  820 
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 822 



		
40

     
 

8
2
3
 

Figure 13 Spatial distributions of CEOF1 amplitude of summer rainfall over the ENP based on four CMIP5 models in 
historical simulations (upper panels) and future projections under the RCP 8.5 scenario (middle panels) and their 
differences (lower panels) 	


