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I. PRELIMINARY MATERIALS  
 
A. Research project objective 
 
The project objective is to develop an integrated seasonal forecast-adaptive management system 
for drought management decision-making by the Lower Colorado River Authority (LCRA) in 
Texas, based on a number of NOAA-supported climate models and data products.  We will apply 
climate and hydrologic data to in expectation of generating skillful hydroclimatic forecasts at 
relevant time scales (3-6 months lead time); assess the potential value of using the forecasts in 
conjunction with risk-sharing policies and financial instruments; identify residual risk; and work 
with the LCRA to incorporate forecasts into operational water resource management models. 

 
B. Stakeholders and decision makers  
 
Project collaborators include Ron Anderson, Chief Engineer, and Bob Rose, Chief Meteorologist 
of the Lower Colorado River Authority (LCRA) in Austin, Texas.  The LCRA manages the 
Highland Lakes reservoir system in central Texas, a series of six lakes on the Lower Colorado 
River.  This system provides water to approximately 1.1 million people in central Texas, supplies 
hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains 
in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay.   

 
C. Approach  
 
The project approach involves the following steps:  

1) Apply climate and hydrologic data to develop a hybrid statistical-dynamical forecast 
model for reservoir inflows at relevant time scales (3-6 month lead time);  

2) Perform hindcast simulations to assess the potential value of using the forecasts in 
conjunction with risk-sharing policies and financial instruments, and identify residual 
risk; and 

3) Work with LCRA staff to incorporate forecasts into operational water resource 
management models.  

The hydroclimatic forecast model utilizes predictors from multiple sources, including seasonal 
climate forecasts from NOAA’s CFS model and National Multi-model Ensemble Forecast 
program, as well as satellite remote sensing estimates of relative soil moisture and land cover 
(e.g., SAR-based soil moisture indices, Landsat and MODIS-based indices).  These predictor 
data will be optimally combined in a hybrid statistical-dynamical forecast model. Both 
parametric and non-parametric methods will be evaluated in developing the statistical 
components of the forecasts, and the Variable Infiltration Capacity (VIC) land surface model will 
generate the dynamic hydrologic forecast.  Hydrologic forecasts will be generated in the form of 
probabilistic (ensemble) forecasts with 3-6 month lead times. 

The ensemble hydrologic forecasts will first be evaluated in the LCRA’s existing decision 
support system (DSS), based on stochastic simulation.  This model generates forecast scenarios 
by Markov chain sampling from the historical record of monthly reservoir inflows according to a 
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simple categorical forecast of ENSO phase.  The DSS is capable of evaluating the impacts of 
different drought “trigger” levels and curtailment policies, and it generates convenient displays 
of the forecast probability distribution of monthly reservoir storage levels up to 5 years in the 
future.   Further, an enhanced DSS will be developed based on a stochastic optimization model.  
This model will be run with a rolling horizon, prescribing “open-loop” operating decisions which 
can then be evaluated to quantify the potential benefits of using forecasts. The enhanced DSS 
will also include features to analyze a select set of risk-sharing instruments that may be valuable 
in mitigating residual risk, including the risk associated with a poor forecast. Examples include 
transfer options and index-based drought insurance programs.  

Water managers at the LCRA will be actively engaged throughout the project, providing regular 
feedback on interim forecast and decision support products.  In addition to regular video 
conferences, two face-to-face workshops will be held with water management decision-makers.  
The objectives of these one-day workshops will be to provide decision-makers with more 
detailed information about project outcomes and to enable them to participate in project outcome 
evaluation.  The first workshop, held in September 2014, focused on preliminary evaluation of 
the seasonal forecast model.  Feedback from LCRA staff was critical to enhancing and tailoring 
the forecasts.  The second workshop, held at the end of Year 2, will involve evaluation of the 
tailored forecast product in combination with the adaptive management support system, along 
with a virtual drought exercise.  Feedback from this workshop will be used for final product 
enhancements and revisions.  All software tools developed in this project will be provided to 
LCRA staff at the end of the project, along with tutorials on use of the software. 

Project evaluation will be based on quantitative measures of forecast skill and value, and 
qualitative measures of capacity building, and contributions in direct support of the National 
Integrated Drought Information System (NIDIS).  Quantitatively, the ensemble streamflow 
forecasts will first be evaluated using a range of distribution-oriented metrics. Next, the value of 
the proposed approach, in comparison to the status quo, will be assessed through hindcast 
simulations with the integrated forecast-decision support system for an extended period, e.g., 
1940-2012. Capacity building will be evaluated based on assessment of training and education 
objectives, specified for each workshop and technology transfer activity.  Finally, we will 
evaluate project success by identifying outcomes that fundamentally contribute to NIDIS.   

 
D. Matching funds/activities  
 
One graduate student working on the project, Brian Zimmerman, has received partial support 
from a Graduate Engineering Research Scholars Fellowship awarded by the University of 
Wisconsin during the 2014-15 academic year.   

One month of academic year salary was provided by Michigan Tech University for David 
Watkins for the 2014-15 academic year.  Travel costs for the annual meeting in Austin, TX in 
September 2014 were also provided by Michigan Tech. 
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E. Partners  
 
We are partnering with the Lower Colorado River Authority (LCRA) in Austin, Texas, with Ron 
Anderson, Chief Engineer, and Bob Rose, Chief Meteorologist, expressly identified as project 
collaborators and agency contacts.  Mark Svoboda, Climatologist, National Drought Mitigation 
Center at the University of Nebraska-Lincoln, is also serving as a project collaborator to assist in 
coordination with NIDIS.  In addition, we are collaborating with the Texas Soil Observation 
Network program led by Todd Caldwell at the University of Texas at Austin, though exchange of 
soil moisture measurements. 
 

II. ACCOMPLISHMENTS  
 
A. Project timeline and tasks accomplished 
 
Work in Quarters 4-7 of the project has focused on validating satellite-based data products (e.g., 
soil moisture, land cover indices), developing statistical forecasts models, generating dynamical 
forecasts from GCMs, and calibrating and verifying the VIC hydrologic model. In addition, work 
has begun to integrate forecasts in the existing and enhanced DSS. 
 
i) Satellite-Based Data Products  

A field campaign was carried out in Summer 2014 to acquire in situ soil moisture data for use in 
deriving satellite-based data products.  Five soil moisture data loggers were installed in the 
Mason Mountain Wildlife Management Area to record soil moisture conditions that were 
representative of the Lower Colorado River Basin study area. Moisture probes for each data 
logger were installed at 10-cm, 18-cm, and 30-cm depths and collected data from the beginning 
of August until the end of September. The data loggers were in place for three Radarsat-2 
overpasses which occurred on August 10, September 3, and September 27.  

Radarsat-2 is a C-band Synthetic Aperture Radar (SAR) satellite. C-Band SAR data has been 
shown to be useful for estimating soil moisture in low-biomass areas, such as the shrub and 
pastureland found in the study area. The Radarsat-2 images collected are fully polarimetric, 
which enables the characterization of the backscattered energy in addition to providing polarized 
backscatter images. This characterization was conducted by performing polarimetric 
decompositions and calculating several polarimetric discriminators. The Freeman-Durden and 
Van Zyl decompositions both decompose backscattered energy into three categories, volume 
scattering, surface scattering, and double bounce. The Cloude-Pottier decomposition has three 
outputs which measure the importance of each of the three types of scattering mechanisms.  
Figure 1 shows the Van Zyl decomposition of the August 10 image. 

Preliminary results show that some of the parameters will be useful for developing a SAR based 
moisture map for the study area. For example, there is a strong relationship (r2 = 0.78) between 
the surface scattering parameter from the Van Zyl decomposition and percentage of volumetric 
water content at 10-cm depth. Once completed, the remotely sensed soil moisture products will 
be incorporated into both the statistical and dynamical forecast models. 
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Fig. 1.  Van Zyl decomposition of the August 10, 2014 Radarsat-2 image. 

 
 
ii) Statistical Forecast Models  
 

For different seasons of the year, the relationship between various rainfall characteristics and 
inflow was examined. Of particular interest was to investigate the role of intense precipitation 
events on inflows.  To do this, the log of inflows was first compared with the total precipitation 
as a baseline.  Next a daily severity index (DSI) was computed which is a basin-wide indicator 
indicating the frequency of daily rainfall exceeding the 90th percentile.  Seasonal inflows and 
DSI values were then analyzed.  The results are shown in Figure 2.  A key finding is that a large 
fraction of the variance in inflow can be attributed to the occurrence (or non-occurrence) of 
heavy rainfall events in the LCRA watershed.  Recent heavy rains in Texas have shown how 
quickly the water supply system can recover from drought. 
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Fig. 2. (top) Relationship between the log of inflows to the LCRA watershed and total rainfall received 
during the March-June season, the black line showing the least squares linear fit.  (bot.) As in the top 
plot, but using the DSI rather than total rainfall.  The DSI accounts for nearly as much of the explained 
variance (r2 = 0.42) as does total rainfall (r2 = 0.47).  

 
Season-ahead statistical forecast models have been developed for precipitation and streamflow. 
In each case, a suite of large-scale (e.g. sea surface temperatures, sea level pressures) and local 
(e.g. soil moisture) season-ahead predictors from the historical record have been evaluated for 
use in a hybrid Principal Components-Autoregressive model.   
 
The seasonal precipitation forecast model uses a Niño Index Phase Analysis (NIPA) framework 
for forecasting total MAMJ and JASO precipitation in the Lower Colorado River Basin from 
NDJF and MAMJ global SSTs and SLPs, respectively (Zimmerman et al., in review).  NIPA has 
been shown to improve seasonal forecasts significantly over the most ‘typical’ approach for 
seasonal forecasting, as shown in Figure 3. The NIPA methodology performs especially well at 
forecasting dry/wet years, as indicated by high Ranked Probability Skill Scores for the 20 driest 
(RPSS = 0.68) and 20 wettest (RPSS = 0.96) years. 
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Fig. 3. Scatter plots of (a) season-ahead hindcasts from a traditional “one-phase” model and (b) 
composite hindcasts from NIPA. 
 
 
Initially, a deseasonalized Autoregressive Moving Average (ARMA) model was developed for 
the Lower Colorado River basin with a correlation of 0.50 at the seasonal time-scale. In order to 
improve the predictive skill of the forecast, a suite of large-scale (e.g., sea surface temperatures 
(SSTs), sea level pressures (SLPs), climate indices) and local (e.g., soil moisture) season-ahead 
predictors from the historical record and dynamical models (i.e., GCMs) were evaluated. The 
selected predictors, along with the forecast from the ARMA model, are combined in a hybrid 
autoregressive-principal component regression framework, which uses principal components 
analysis to isolate dominant modes of variability in the historical data.  Results demonstrate 
significant overall forecasts skill, particularly for the MAMJ inflow season (r = 0.70, RPSS = 
0.72) (Figure 4), where ARMA, soil moisture, CFSv2 precipitation forecasts, and SSTs were 
selected as predictors. Forecasts of JASO inflows also exhibit increased predictive skill over 
climatology (r = 0.63, RPSS = 0.64). The ARMA results, CFSv2 precipitation forecasts, and 
SLPs provided the strongest predictive skill for the JASO season.  
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Fig. 4. Categorical model results for MAMJ Inflows. Each color (category) represents the expected 
probability of the observation falling in that category. Observed category denoted by a star. 

 
iii) Dynamical Forecast Models  
 

Independent of the statistical forecast models, dynamical and hybrid statistical-dynamical 
precipitation and streamflow forecasts were developed using the National Multi-Model 
Ensemble (NMME).  The methodology is outlined in Figure 5 and essentially involves using 
principal components analysis (PCA) to extract a common precipitation signal from multiple 
models within the NMME (CanCM3, CanCM4, GFDL, NASA, and CFSv2).  This information 
is then used as input to a statistical model that utilizes historical inflows to evaluate the 
relationship between the two over the hindcast period 1982-2010.  The statistical model 
generates probabilistic forecasts of inflow values, i.e., probabilities either of falling into specified 
categories or of exceeding specified absolute values. 

The skill of the inflow forecasts was evaluated using multiple metrics.  An example is shown in 
Figure 6, which shows the relative operating characteristics (ROC) scores for four different 
seasons. Overall forecast skill is modest, but is statistically significant in three out of the four 
seasons. September-November forecasts show the highest skill.  No statistically significant skill 
is identified for the June-August season.   
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Fig. 5. Inflow forecast methodology. Precipitation hindcasts (1982-2010) from five climate models are 
combined using PCA, the results used as input to a regression model where the relationship with 
historical inflows is evaluated.  The regression model then generates the seasonal inflow forecast. 

 

 

Fig. 6. ROC scores of hindcast inflow predictions for different seasons over the period 1982-2010. Red 
(blue) lines are for forecasts of below-average (above-average) inflows.  ROC values above and to the 
left of the black diagonal line in the plots indicates skill. Correlation values and t-statistic scores are also 
indicated on each plot.  
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For those seasons where the NMME precipitation forecasts provide statistically significant skill, 
the precipitation forecasts will be temporally disaggregated to generate several sets of plausible 
daily sequences of precipitation (and temperature) to be used as input into a land surface model.  
The latter will also be used to generate inflow forecasts, the results to be compared with those 
described above. 

The land surface model selected for generation of physically based inflow forecasts is the 
Variable Infiltration Capacity (VIC) hydrologic model. The VIC model simulates runoff and 
baseflow on a 1/8th-degree grid and daily time step and routes flows to the LCRA water supply 
reservoirs.  Model extents and inputs from the Gulf Region were clipped to represent only the 
contributing areas of the Highland Lakes in order to decrease model run times. 

After defining the watershed extent, VIC was calibrated to best match observed flows into the 
Highland Lakes for the period 1940 through 2011. VIC calibration is done through adjusting five 
soil parameters: (1) b_infilt, which describes the available infiltration capacity over the grid cell; 
(2) Ds_max, the maximum baseflow from the bottom soil layer; (3) Ds, the fraction of Ds_max 
where non-linear baseflow is observed; (4) Ws, the fraction of largest soil moisture at which 
nonlinear baseflow occurs; and (5) Soil Depth for each of three layers used in VIC (though we 
focused on the top layer initially).  Of these, b_infilt, Ds, and Ws are conceptual parameters that 
were adjusted within recommended ranges. The parameters Ds_max and Soil Depth have a direct 
physical interpretation, and were thus estimated spatially based on data from the USDA-NRCS 
SSURGO database.  

These parameters were adjusted in order to maximize the Nash-Sutcliffe Efficiency (NSE) while 
maintaining a high correlation coefficient (r) and low percent error in total volume.  A 
sensitivity-based radio tuning calibration procedure was conducted (which assumes linearity and 
additivity), with additional runs of the VIC model to test for nonlinear behavior and parameter 
interactions.  A final quantile-matching bias correction was applied to the monthly flows, 
resulting in an overall r2 value of 0.70 and NSE of 0.77 for total monthly inflows into the 
Highland Lakes.  Results are shown in Figures 7 and 8.  Although calibration and verification 
will continue during the final year of the project, large improvements in goodness-of-fit statistics 
are not expected due to rainfall sampling errors, i.e., large flows are often produced by intense 
rainfall over small geographical areas in central Texas.  However, model calibration may 
improve with respect to low flows, which is of more interest for this project. 
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Fig. 7. Total monthly simulated (VIC) and observed (CRTR) inflows to the Highland Lakes, 1940-2011. 

 

 

Fig. 8. Monthly simulated (VIC) vs. observed inflows to the Highland Lakes, 1940-2011. 

 

iv) Decision Support System  

Progress has been made in developing a Highland Lakes reservoir simulation/optimization model 
to understand the impact of incorporating forecasts into the LCRA’s decision making process, 
primarily in terms of amount of water made available to interruptible water customers.  
Preliminary simulation results indicate larger variability in interruptible water contracts, fewer 
curtailments, and lower spill volumes when using seasonal forecasts.  Further work on this model 
will be undertaken in the final project year. 
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B. Application of findings to inform decision making  
 
Application of findings to inform decision making is primarily planned for the final year of the 
project.  However, our research group presented our project and current accomplishments at the 
recent ASCE-EWRI Congress in Austin, TX, and several LCRA staff were in attendance and 
provided feedback. We also met with LCRA staff to plan the next steps of the project.  In 
addition, we have maintained regular correspondence with Ron Anderson of the LCRA, 
including exchanges of preliminary research results and related work that has appeared in the 
literature. 
 
 
C. Planned methods to transfer knowledge 
 
LCRA water managers have been engaged throughout the project through frequent emails, 
occasional web conferences, and annual face-to-face workshops.   Although we feel we have 
been reasonably successful in transferring knowledge to date, we have been made more keenly 
aware of the “gap” between research and practice and the need to tailor data products and tools 
for use by water managers.  It may be that not all of the data products being developed are 
“usable” by the LCRA, for reasons such as limited staff time, computer resources, and 
experience with different models, and thus we will need to focus on a smaller set of products that 
have a greater chance of gaining acceptance and being used in practice. 

All forecast models and data products will be shared with NIDIS.  In addition, we intend to 
explore the generalizability of our findings for central Texas to other climate divisions in the 
U.S.  
 
D. Significant deviations from proposed work plan 
 
The project end date has been extended (at no additional cost) to August 31, 2016.  This will 
provide additional time for completion of the dynamical forecast model (expected completion by 
December 2015), refinement of the statistical forecast models (December 2015), and 
incorporation of forecasts in the enhanced DSS (April 2016). 

Along with a second decision maker workshop in late Summer or early Fall 2015, an additional 
workshop is planned near the end of the project in Summer 2016.  

 
E. Completed publications, white papers, or reports 
 
There are no publications to date.  Two journal papers are in review. 
 
 
III. GRAPHICS: PLEASE INCLUDE THE FOLLOWING GRAPHICS AS SEPARATE ATTACHMENTS TO 
YOUR REPORT 
 
A Powerpoint slide is attached, depicting the overall framework for this project. 
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Additional information and graphic are available from the research team’s EWRI conference 
presentations, posted on-line:  
 

• https://docs.google.com/file/d/0Byz8QM_b4b4qZFZPRUFUSEpTczA/edit 
 

• https://docs.google.com/presentation/d/1wtNFoNzDHjKF05WFdXkPiyPDvQxlweAwfgbiPXvhN1Q
/edit?usp=sharing 

 
• https://drive.google.com/file/d/0B9MZjFxMoYKSanVFUnZGNVJXRzQ/view?usp=sharing 

 
Permission is hereby granted for use of any figures in this report or made available online. 
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