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The drought forecasting challenges: large, complicated and many

Three challenges where we could spend an hour discussing each:

1. How important is land-atmospheric coupling for drought predictability? May
the summer time seasonal drought forecast breakdown be due to poor CFSv2
coupling? Are there CFSv2 terrestrial hydrologic parameterizations that may

be causing prediction problems?

=  Roundy JK, Ferguson CR, Wood EF (2012) Temporal variability of land-atmosphere coupling and its
implication to drought over the Southeast United States. JHM d0i:10.1175/JHM-D-12-090.1

= Roundy J, CR Ferguson and EF Wood One reason the CFS forecasts system cannot consistently
predict summer time drought in the continental U.S. Climate Dynamics (in review)

2. What do we know about the sources of hydrologic predictability, and are there
limits? What is the impact of initial soil moisture conditions versus

precipitation forecast skill in determining hydrologic predictive skill?

=  Shukla, S, J Sheffield, E F Wood and D P Lettenmaier On the sources of global land surface
hydrologic predictability, JHM, (in review)

= A.Van Dijk et al., Seasonal streamflow predictability: skill of a global ensemble streamflow
prediction system assessed for 6192 small catchments worldwide, WRR (in revision).

3. How can we best determine the probability of drought recovery?
= Pan M and E F Wood A statistical analysis of drought recovery with application to 2013.
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Temporal variability of land-atmospheric coupling

 What is the temporal variability of land atmosphere interactions and what role
does it play in hydrologic extremes of drought and wet conditions?

 Develop new classification of land atmosphere coupling for drought:
CDI=(Npc-Nyc)/(Npc+Ny o)
 The Classified CTP-HI space is then used to generate a time series of coupling
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CFSv2 fails hold dry coupling in the CDI resulting in a wet precipitation bias
relative the CFSR.
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Comparisons between CFSR and CFSRR shows a summer time seasonal forecast
divergence.

e Difference (Forecast — 0531-Reanalysis) Average Summer (June — Sep) for 28
years. (CFSRR low dry coupling in northern GP; biased wet; high ET; etc.
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CFSv2 summertime seasonal forecast breakdown...a challenge to fix it.

e How does the coupling in the forecast models differ from the reanalysis?
e Use the NCEP Climate forecast system (CFSR- CFSRR) 1982-2009
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Initial soil moisture (and snow) conditions dominate precipitation forecasts
as a source predictability in hydrological seasonal forecasts.
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To what extent do climate anomalies provide information useful to
improving seasonal hydrological prediction? Apparently very little.

The maximum theoretical forecast skill
for runoff (ranked correlation
coefficient among the six forecast
periods)
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Integrating drought monitoring and seasonal hydrological forecasting
to assess drought recovery risks
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Integrating drought monitoring and seasonal hydrological forecasting
to assess drought recovery risks

ESP (50 years) was used to
project drought recovery using
initial soil moisture conditions
from our drought monitor
(http:hydrology.princeton.edu/
forecast/current.php)

The ensemble of the joint
distribution of predicted Soil
Moisture Drought Index and
Cumulative Precipitation since
Feb (forecast initialization) was
fit using Copula statistics.

EXAMPLE ON THE RIGHT
4° area centered at (100o0W,
400N) in lowa

Conditional PDF: 50% and 70%
cumulative Precipitation
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Integrating drought monitoring and seasonal hydrological forecasting
to assess drought recovery risks

Average precipitation quantile for soil moisture drought index to exceed 0.3
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