

The Subseasonal to Seasonal (S2S) Prediction Project

"Bridging the gap between weather and climate (and their respective communities...)"

MAPP Webinar, Wed 21 Feb 2018

Paolo Ruti (WWRP) Michel Rixen (WCRP)

Historical background

1950	63	1967	1970 1974	1985	1985	1998	2004	2013	201	4 2015
WMO special of the Nation meteo World Watc	ized a Unite s for rolog d Wea	Researce establis Meteore agency d	Global Atmospheric th Programme) hed by WMO (World ological Organization) Conduct of GARP Regiona GATE:GARPAtlanticTropic MONEX:MonsoonExperim ALPEX:AlpineExperiment AMEX:AirMassTransforma WCRP, Worl Research Pro (WMO, ICSU	G Experim al Experim al Experim ation Experiment ation Experiment d Clima ogrami	kperimen nents: nent eriment ate me 1 st	Numerica	THORPE System a Predicta Experim (Worl ch Prog Sidney /eather	Polar Pr Projects X (Obser and bility ent) d Weat gramm y2000 Researc	redic s ving cher e).	High Impact Weather Project
VV	MO	OMIM								

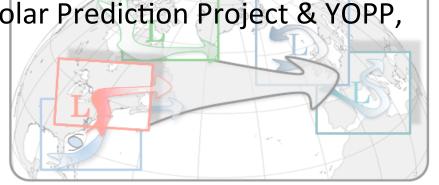
The World Weather Research Programme

WMO's mechanism to foster and progress cooperative research for improved weather and environmental prediction services from minutes to months

Mission

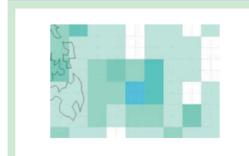
"The WMO World Weather Research Programme (WWRP) promotes international and interdisciplinary <u>research for more accurate and reliable</u> <u>forecasts from minutes to seasons</u>, expanding the frontiers of weather science to enhance society's resilience to high-impact weather and the <u>value of</u> <u>weather information for users</u>. WWRP aims at Seamless Prediction by increasing convergence between weather, climate and environmental approaches. WWRP <u>strengthens academic – operational partnerships</u> and interdisciplinary collaborations, and enhances <u>the role of Early Career Scientists</u>

Some Key Achievements

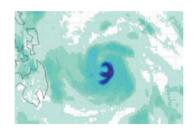

- Advancement in science of predictability, ensemble prediction, data assimilation, and nowcasting - high-resolution NWP
- Major field campaigns: IPY, YOTC, T-PARC, CONCORDIASI
- Data Infrastructure for research: THORPEX Interactive Grand Global Ensemble (TIGGE), forerunner for S2S database
- Quantifying the value/utility of targeting observations (WMO guidelines)
- Dedicated regional projects from research to forecast demonstration (Mesoscale Alpine Programme, Olympic Games)
- Major international workshops & training activities, sharing knowledge across communities and countries

Key topics at intersection of weather, climate and environment

- Understanding the multi-scale interaction between high-impact weather events and the environment in which they develop (HIWeather and GC Extremes; clouds to circulation GC; SPARC-PDEF link)
- Improving forecast skill and understanding on the subseasonal to seasonal timescale (S2S)
- Linking the impact of regional circulation systems to decision making processes both locally and globaly (Monsoons, tropical cyclone variability and impacts, air-quality)
- Increasing predictive skill for both weather and climate through coupled earth system modeling (Polar Prediction Project & YOPP, coupled data assimilation, ...)



Key topics at intersection of weather, climate and environment


Advancing modelling and observations:

- Research to define the future observing system must consider needs for weather, climate and environment
- Distinction between weather and climate models is becoming less meaningful (WGNE, WWRP/ GEWEX-GASS-GLASS)
- HPC and data handling represent major future challenges
- Innovation in ensemble prediction, data assimilation, verification, post-processing has applications at all scales (Reanalysis, CMIP, ...)
- Modelling and observing impacts needs shared expertise on vulnerability and risk

1981: Global models run at ~200 km resolution. Example: Total precipitation of Typhoon Haiyan (2013) in DWD ICON shown at 200 km resolution

2016: Global models run at ~12 km resolution. Example: Total precipitation of Typhoon Haiyan (2013) in DWD ICON, shown at 12 km resolution

Key topics at intersection of weather, climate and environment

Strengthening regional activities:

- Societal impacts depend crucially on regional characteristics => joint regional projects e.g. WWRP & WCRP involvement in HyMEX
- Sustainable development requires working in partnership to enhance regional capacity

Preparing for the future:

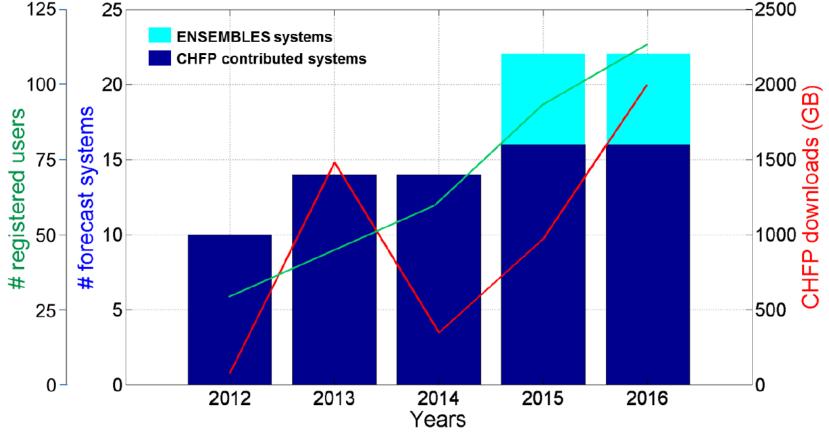
- Research expertise must contribute to capacity development, e.g. Joint WG Verification training courses
- The long term success of research programmes depends on the involvement of Early Career Scientists - YESS

WCRP's mission....

... is to facilitate analysis and prediction of Earth system variability and change for use in an increasing range of practical applications of direct relevance, benefit and value to society.

The two overarching objectives of WCRP are:

to determine the predictability of climate


to determine the effect of human activities on climate

Current WGSIP Projects – CHFP

- Climate-system Historical Forecast Project (CHFP) is an extensive multi-model archive of seasonal hindcasts
- Supports investigations into seasonal predictability of the climate system and multi-model ensemble forecasting

CHFP evolution

Current WGSIP Projects – CHFP

CHFP data served at CIMA:

Centro de Investigaciones del Mary la Atmósfera

She Working Group on Seasonal to Interannual Prediction (WGSIP) develops a programme of numerical experimentation for seasonal-to-interannual variability and predictability, with an emphasis on assessing and improving predictions.

WCRP Climate-system Historical Forecast Project (CHFP)

Select Variables	
cit - Total cloud cover	hfisd - Surface latent flux
hfssd - Surface sensible flux	mrsov - Total soil moisture
prir - Total precipitation	📄 psi - Mean sea level pressure
rlds - Downward surface longwave	Its - Net surface longwave
rit - Top net longwave	rsds - Downward surface solar
rss - Net surface solar	🔲 rst - Top net solar
snid - Snow depth	🔲 tas - 2m temperature
tasmax - 2m T daily max	🛑 tasmin - 2m T daily min
tauu - Surface DownEast stress	tauv - Surface DownNorth stress
tauy - Surface DownNorth stress	tdps - 2m dewpoint temperature
ts - Surface temperature (SST+land)	uas - 10m wind (u)
vas - 10m wind (v)	

CHFP/SHFP Atmosphere - Surface - Monthly

Component	Select	: Init	ial S	tart	Mor	nth															
Atmosphere		<u>Feb</u>	May	<u>Aug</u>	Nov		<u>Feb</u>	May	<u>Aug</u>	Nov		<u>Feb</u>	<u>May</u>	<u>Aug</u>	Nov		<u>Feb</u>	May	<u>Aug</u>	Nov	
<u>)cean</u> and	<u>1979</u>																				
ne of level	<u>1980</u>					<u>1990</u>					<u>2000</u>					<u>2010</u>					
evels	<u>1981</u>					<u>1991</u>					<u>2001</u>					<u>2011</u>					
urface	<u>1982</u>					<u>1992</u>					2002					<u>2012</u>					
wariant	1983					1993					2003					2013					
requency	1984					1994					2004					2014					
<u>hs</u> Jaily	1985					1995					2005					2015					
/lonthly	1986	_				1996	_				2005	_				2015	_				
<u>nvariant</u>											_										
	<u>1987</u>					<u>1997</u>					<u>2007</u>					<u>2017</u>					
	<u>1988</u>					<u>1998</u>					<u>2008</u>		\cup			<u>2018</u>		\cup	\cup		
	<u>1989</u>					<u>1999</u>					<u>2009</u>					<u>2019</u>					
	Clear al																				
		-																			
	Select	t Mo	del																		
	A	RPEG	E*		CCCn	na-Can	СМЗ	_ c	CCma	a-Can	СМ4 (CF	S*			СМ	۹W^				
	c	мамі	0		ECMV	VF-S4*			iloSea	15*	(JN	IAMRI	CGC	M1	JMA	MRI-0	GCM	2		
		38Glo	Sea4		L85G	oSea4			IROC	5		ME	PI-ESN	I-LR*		poa	ma				
				_				_				_									
	(*) strat Select a	-		solvin	g moa	leis															
	<u>select a</u>	<u>n - CR</u>	car all																		

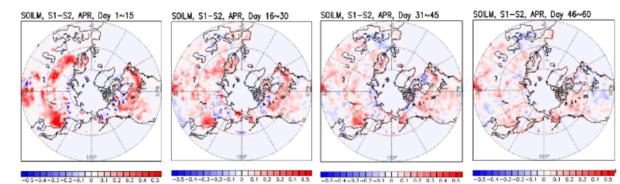
Q

📥 Login

Current WGSIP Projects – SNOWGLACE

WMO WGSIP INITIATIVE: "SNOWGLACE":

An international project aimed at quantifying snow initialisation impact on subseasonal-to-seasonal forecasts


Yvan J. Orsolini^{1,2} and Jee-Hoon Jeong³

¹ NILU - Norwegian Institute for Air Research, ² BCCR - Bjerknes Centre for Climate Research,
³ Faculty of Earth Systems & Env. Sciences, Chonnam National Univ., South Korea

- Modeling strategy follows that of GLACE2 initiative (compare forecast sets having realistic vs climatological land initializations)
- Participants: ECMWF, BSC (Spain), NILU (Norway), Chonnam National University - UNIST (South Korea), KOPRI (South Korea), IAP (China), Gøteborg University (Sweden)

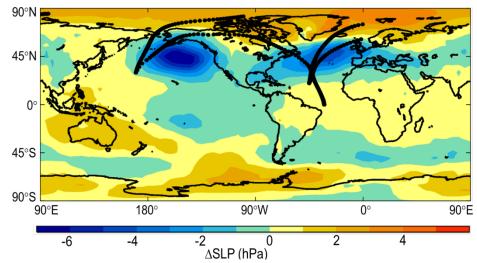
Increase in soil moisture potential predictability attributable to realistic snow initialization as a function of lead time, 1 Apr initialization

WARD

Current WGSIP Projects – Teleconnections

WMO WGSIP INITIATIVE: "Interaction/teleconnection between tropics and extra-tropics":

An international project aimed at diagnosing tropical-extratropical interactions at seasonal and sub-seasonal time scales


Laura Ferranti¹ Adam Scaife² Herve Douville³

¹ European Center for Medium Range weather Forecast, ² Met Office Hadley Centre, ³ Meteo France

 Aim is to evaluate ability of current dynamical forecasting systems in representing tropical-extratropical teleconnections, using tropical rainfall to anomalous tropical atmospheric heat sources

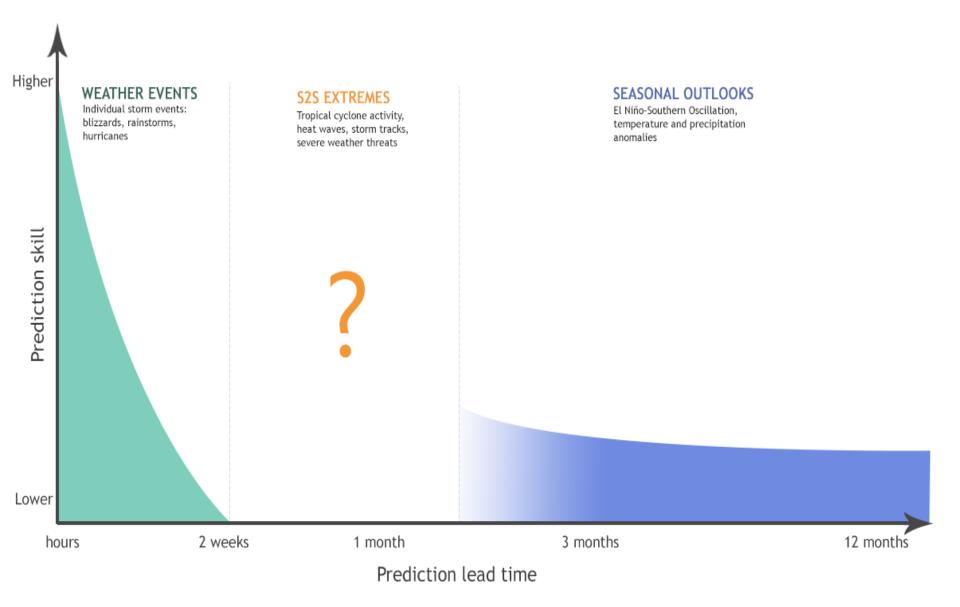
Atmospheric teleconnections arising from El Niño in boreal winter. Dots represent approximate pathways of barotropic planetary waves having azimuthal wave numbers 1 and 2, propagating on the observed climatological background wind (after Scaife et al [2017]). Colors show associated changes in sea level pressure in hPa, indicative of atmospheric circulation changes.

WCRP

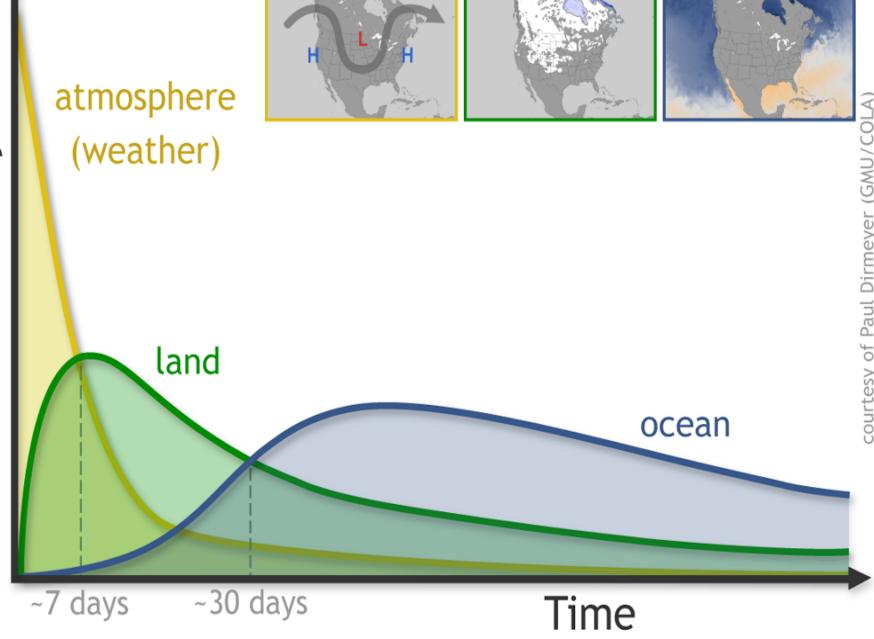
Current WGSIP Projects- Shock/Drift

WMO WGSIP INITIATIVE:

Long-Range Forecast Transient Intercomparison Project (LRFTIP)


An international project aimed at characterizing transient behaviour of initialized forecasts on subseasonal to decadal time scales

William Merryfield¹ (lead, S2D component), Mikhail Tolstykh^{2,3} (lead, S2S component), Francisco Doblas-Reyes⁴, Tamaki Yasuda⁵, Woo-Sung Lee¹


¹ Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, ² Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), ³ Hydrometcentre of Russia (HMCR), ⁴ Catalan Institute of Climate Sciences (IC3), ⁵ Japan Meteorological Agency (JMA)

- Purpose is to enable multi-model intercomparison studies of the transient behavior of coupled long-range forecast models evolving from observation based initial conditions
- **Models:** Archive of hindcast and ancillary climatologies so far includes
 - **4 subseasonal** forecast models (S2S)
 - 19 seasonal forecast models (CHFP, ENSEMBLES)
 - 15 decadal forecast models (CMIP5, ENSEMBLES)

The S2S Prediction Gap

Predictability

courtesy of Paul Dirmeyer (GMU/CO

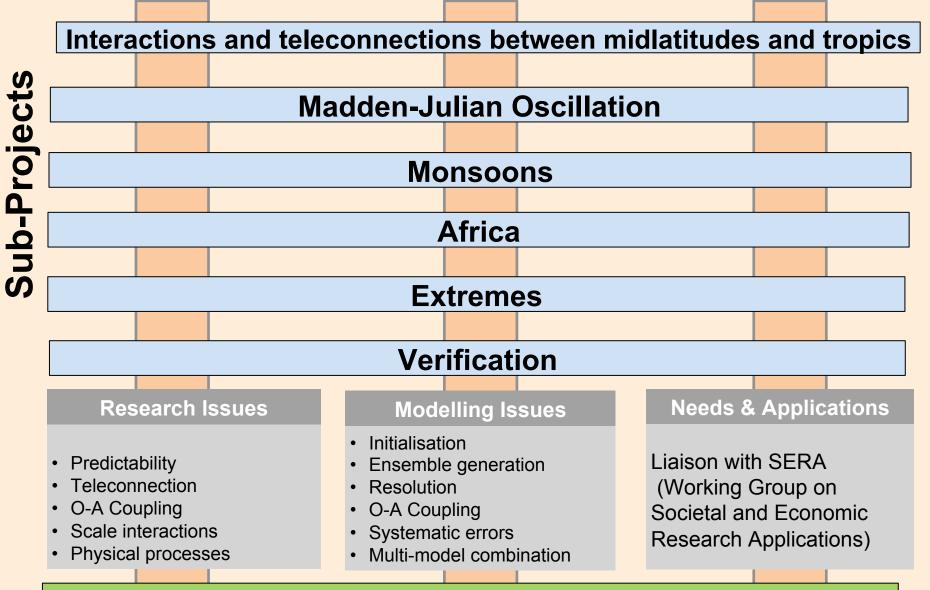
WWRP-WCRP S2S Project Mission Statement

"To improve forecast skill and understanding on the sub-seasonal to seasonal timescale with special emphasis on high-impact weather events"

"To promote the initiative's uptake by operational centres and exploitation by the applications community"

"To capitalize on the expertise of the weather and climate research communities to address issues of importance to the Global Framework for Climate Services"

S2S Project


5-year project, started in Nov 2013

Project office: KMA/NIMR hosts the project office in Jeju island

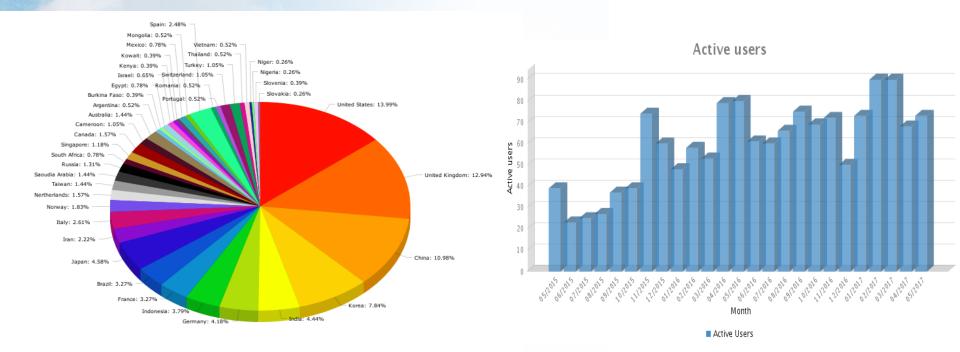
Trust Fund: Contributions from Australia, Canada and UK

http://s2sprediction.net/

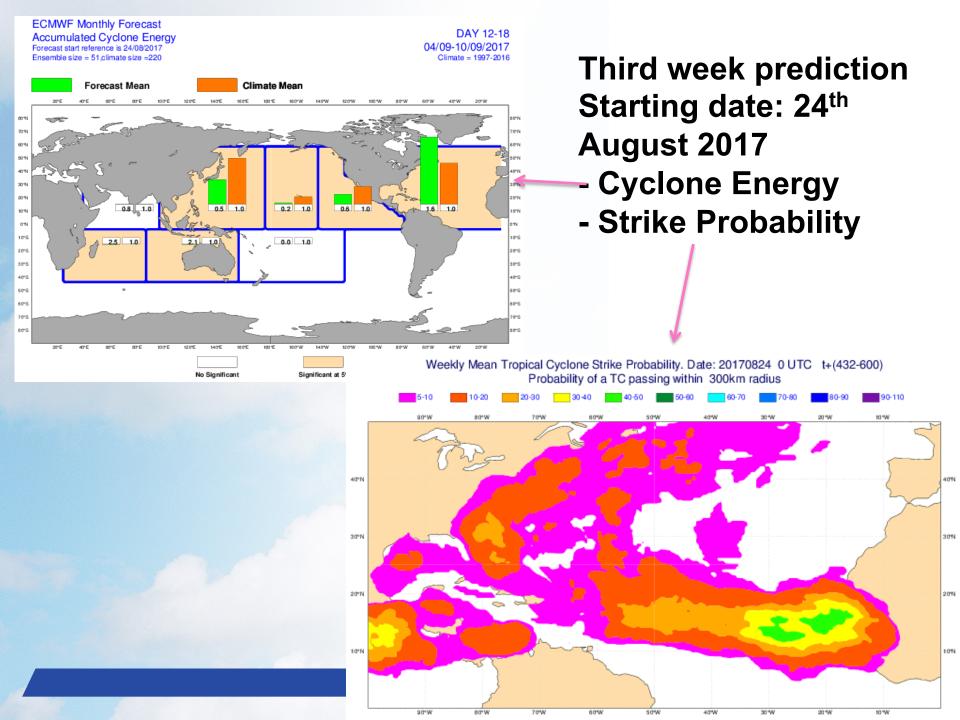
Sub-seasonal to Seasonal (S2S) Prediction Project

S2S Database

S2S Database


- Daily real-time forecasts + re-forecasts
- 3 weeks behind real-time
- Common grid (1.5x1.5 degree)
- Variables archived: about 80 variables including ocean variables, stratospheric levels and soil moisture and temperature

S2S partners


	Time- range	Resol.	Ens. Size	Freq.	Hcsts	Hcst length	Hcst Freq	Hcst Size
ECMWF	D 0-46	Tco639/319L91	51	2/week	On the fly	Past 20y	2/weekly	П
UKMO	D 0-60	N216L85	4	daily	On the fly	1993-2015	4/month	7
NCEP	D 0-44	N126L64	4	4/daily	Fix	1999-2010	4/daily	I
EC	D 0-32	0.6x0.6L40	21	weekly	On the fly	1995-2014	weekly	4
CAWCR	D 0-60	T47L17	33	weekly	Fix	1981-2013	6/month	33
JMA	D 0-33	TI479/TI319L100	50	weekly	Fix	1981-2010	3/month	5
КМА	D 0-60	N216L85	4	daily	On the fly	1996-2009	4/month	3
СМА	D 0-45	T106L40	4	daily	Fix	1886-2014	daily	4
CNRM	D 0-32	T255L91	51	Weekly	Fix	1993-2014	2/monthly	15
CNR- ISAC	D 0-31	0.75×0.56 L54	40	weekly	Fix	1981-2010	6/month	I
HMCR	D 0-63	1.1x1.4 L28	20	weekly	Fix	1981-2010	weekly	10

Use of the S2S database Since May 2015

- 848 registered users from 88 countries at ECMWF
- 222 register users mostly from China at CMA

ECMWF Server

S2S Phase I - some key findings

- The skill of MJO forecasts in 7 of 10 S2S models exceeds a <u>bivariate correlation</u> <u>skill of 0.5 at 20-day lead</u>, while only <u>one model reaches that level after 30 days</u>;
- MJO <u>teleconnections over the North Atlantic</u> are of <u>realistic sign</u>, <u>but too weak</u> in all the models;
- MJO skill is <u>enhanced by up to a week</u> during the <u>easterly phase</u> of the stratospheric <u>QBO</u> in several S2S models;
- Evidence from the S2S database forecast ensembles suggests that the severe <u>cold</u> <u>spell</u> that affected <u>Western Europe in March 2013</u> was at least in part attributable to a strong <u>MJO</u> event <u>propagating into the western Pacific</u>.
- The skill of the S2S models to predict <u>Euro-Atlantic weather regimes</u> and their transitions has been assessed. Results indicate predictive skill up to about <u>3 weeks</u> for the positive and negative NAO phases, and up to about <u>16 days</u> for the <u>other</u> <u>weather regimes</u>. The S2S models display skill to predict weather regime transitions up to about 16 days.

https://www.wcrp-climate.org/s2s-s2d-2018-home

16 March 2018: Deadline for submissions and applications for financial support

🍞 MAPP

525