CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

Projected shifts in 21st century sardine distribution and catch in the California Current

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2021

Author(s): Fiechter, J., Buil, M.P., Jacox, M.G., Alexander, M.A. and Rose, K.A.


Project PI: Curchister
DOI: http://doi.org/10.3389/fmars.2021.685241

Predicting changes in the abundance and distribution of small pelagic fish species in response to anthropogenic climate forcing is of paramount importance due to the ecological and socioeconomic importance of these species, especially in eastern boundary current upwelling regions. Coastal upwelling systems are notorious for the wide range of spatial (from local to basin) and temporal (from days to decades) scales influencing their physical and biogeochemical environments and, thus, forage fish habitat. Bridging those scales can be achieved by using high-resolution regional models that integrate global climate forcing downscaled from coarser resolution earth system models. Here, “end-to-end” projections for 21st century sardine population dynamics and catch in the California Current system (CCS) are generated by coupling three dynamically downscaled earth system model solutions to an individual-based fish model and an agent-based fishing fleet model. Simulated sardine population biomass during 2000–2100 exhibits primarily low-frequency (decadal) variability, and a progressive poleward shift driven by thermal habitat preference. The magnitude of poleward displacement varies noticeably under lower and higher warming conditions (500 and 800 km, respectively). Following the redistribution of the sardine population, catch is projected to increase by 50–70% in the northern CCS and decrease by 30–70% in the southern and central CCS. However, the late-century increase in sardine abundance (and hence, catch) in the northern CCS exhibits a large ensemble spread and is not statistically identical across the three downscaled projections. Overall, the results illustrate the benefit of using dynamical downscaling from multiple earth system models as input to high-resolution regional end-to-end (“physics to fish”) models for projecting population responses of higher trophic organisms to global climate change.

Changes to the structure and function of the albacore fishery reveal shifting social-ecological realities for Pacific Northwest fishermen

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2021

Author(s): Frawley, T.H., Muhling, B.A., Brodie, S., Fisher, M.C., Tommasi, D., Le Fol, G., Hazen, E.L., Stohs, S.S., Finkbeiner, E.M. and Jacox, M.G.


Project PI: Curchister
DOI: http://doi.org/10.1111/faf.12519

Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.

Management strategy evaluation: allowing the light on the hill to illuminate more than one species

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2021

Author(s): Kaplan, I.C., Gaichas, S.K., Stawitz, C.C., Lynch, P.D., Marshall, K.N., Deroba, J.J., Masi, M., Brodziak, J.K., Aydin, K.Y., Holsman, K. and Townsend, H


Project PI: Curchister
DOI: http:// https://doi.org/10.3389/fmars.2021.624355

Management strategy evaluation (MSE) is a simulation approach that serves as a “light on the hill” (Smith, 1994) to test options for marine management, monitoring, and assessment against simulated ecosystem and fishery dynamics, including uncertainty in ecological and fishery processes and observations. MSE has become a key method to evaluate trade-offs between management objectives and to communicate with decision makers. Here we describe how and why MSE is continuing to grow from a single species approach to one relevant to multi-species and ecosystem-based management. In particular, different ecosystem modeling approaches can fit within the MSE process to meet particular natural resource management needs. We present four case studies that illustrate how MSE is expanding to include ecosystem considerations and ecosystem models as ‘operating models’ (i.e., virtual test worlds), to simulate monitoring, assessment, and harvest control rules, and to evaluate tradeoffs via performance metrics. We highlight United States case studies related to fisheries regulations and climate, which support NOAA’s policy goals related to the Ecosystem Based Fishery Roadmap and Climate Science Strategy but vary in the complexity of population, ecosystem, and assessment representation. We emphasize methods, tool development, and lessons learned that are relevant beyond the United States, and the additional benefits relative to single-species MSE approaches.

Interannual Variability of the Mid‐Atlantic Bight Cold Pool

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2020

Author(s): Chen, Z., & Curchitser, E. N. 


Project PI: Curchister
DOI:

The Mid-Atlantic Bight (MAB) Cold Pool is a bottom-trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along-shelf propagation is investigated based on a long-term (1958–2007) high-resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume-averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near-bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.

Dynamical downscaling of future hydrographic changes over the Northwest Atlantic Ocean

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2020

Author(s): Shin, S., and Alexander, M. A. 


Project PI: Curchister
DOI: http://https://doi.org/10.1175/JCLI-D-19-0483.1

Projected climate changes along the U.S. East and Gulf Coasts were examined using the eddy-resolvingRegional Ocean Modeling System (ROMS). First, a control (CTRL) ROMS simulation was performed usingboundary conditions derived from observations. Then climate change signals, obtained as mean seasonalcycle differences between the recent past (1976–2005) and future (2070–99) periods in a coupled global cli-mate model under the RCP8.5 greenhouse gas trajectory, were added to the initial and boundary conditionsof the CTRL in a second (RCP85) ROMS simulation. The differences between the RCP85 and CTRLsimulations were used to investigate the regional effects of climate change. Relative to the coarse-resolutioncoupled climate model, the downscaled projection shows that SST changes become more pronounced nearthe U.S. East Coast, and the Gulf Stream is further reduced in speed and shifted southward. Moreover, thedownscaled projection shows enhanced warming of ocean bottom temperatures along the U.S. East and Gulf Coasts, particularly in the Gulf of Maine and the Gulf of Saint Lawrence. The enhanced warming was relatedto an improved representation of the ocean circulation, including topographically trapped coastal oceancurrents and slope water intrusion through the Northeast Channel into the Gulf of Maine. In response toincreased radiative forcing, much warmer than present-day Labrador Subarctic Slope Waters entered the Gulf of Maine through the Northeast Channel, warming the deeper portions of the gulf by more than 48ºC.

An Numerical Model Analysis of the Mean and Seasonal Nitrogen Budget on the Northeast U.S. Shelf.

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2018

Author(s): Zhang. S., C. A. Stock, E. N. Curchitser, and R. Dussin


Project PI: Curchister
DOI: http://DOI:10.1029/2018JC014308

The supply of nitrogen is a primary limiting factor for the productivity of the Northeast United States (NEUS) continental shelf. In this study, a 12-year (1996–2007) retrospective physical-biogeochemical simulation over the Northwest Atlantic was used to analyze the mean and seasonal NEUS shelf nitrogen budget, including the connections between shelf subregions: the Gulf of Maine/Georges Bank (GoM/GB), and the Mid-Atlantic Bight (MAB). The model captures the primary mean and seasonal patterns of shelf circulation, nitrate, and plankton dynamics. Results confirm aspects of previous nitrogen budget analyses, including the dominance of offshore nitrogen influxes into the GoM/GB and the prominent role of riverine influxes and sedimentary denitrification in the MAB. However, detailed spatiotemporal analysis of nitrogen fluxes highlights the importance of dispersed inflows of shallow to intermediate depth waters (0–75 m), which can at times exceed the deep nitrogen influx emphasized in previous studies. A seasonal analysis shows a pronounced shift from the net import of nitrogen to the GoM/GB region during late fall and winter, to the net export of nitrogen from the region in the spring and early summer. The MAB, in contrast, consistently exports nitrogen to offshore waters. The prominence of the 0-75m nitrogen supply has implications for the roles of Labrador Slope Water and Atlantic Temperate Slope Water on the NEUS ecosystems, as Atlantic Temperate Slope Water has greater nitrate concentrations than Labrador Slope Water at depth but often less at the surface. Results suggest the need for further study of shallow to intermediate depth inflows beyond those from the Scotian Shelf, particularly during the fall/winter of net nitrogen inflow.

Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2018

Author(s): Zhang, S., E.N. Curchitser, D. Kang, C.A. Stock and R. Dussin


Project PI: Curchister
DOI: http:// https://doi.org/10.1002/2017JC013402

The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

On the Evaluation of Seasonal Variability of the Ocean Kinetic Energy

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2017

Author(s): Kang, Dujuan, and Enrique N. Curchitser


Project PI: Curchister
DOI: http://https://doi.org/10.1175/JPO-D-17-0063.1

The seasonal cycles of the mean kinetic energy (MKE) and eddy kinetic energy (EKE) are compared in an idealized flow as well as in a realistic simulation of the Gulf Stream (GS) region based on three commonly used definitions: orthogonal, nonorthogonal, and moving-average filtered decompositions of the kinetic energy (KE). It is shown that only the orthogonal KE decomposition can define the physically consistent MKE and EKE that precisely represents the KEs of the mean flow and eddies, respectively. The nonorthogonal KE decomposition gives rise to a residual term that contributes to the seasonal variability of the eddies, and therefore the obtained EKE is not precisely defined. The residual term is shown to exhibit more significant seasonal variability than EKE in both idealized and realistic GS flows. Neglecting its influence leads to an inaccurate evaluation of the seasonal variability of both the eddies and the total flow. The decomposition using a moving-average filter also results in a nonnegligible residual term in both idealized and realistic GS flows. This type of definition does not ensure conservation of the total KE, even if taking into account the residual term. Moreover, it is shown that the annual cycles of the three types of EKEs or MKEs have different phases and amplitudes. The local differences of the EKE cycles are very prominent in the GS off-coast domain; however, because of the spatial inhomogeneity, the area-mean differences may not be significant.

Seasonal Variability Of The Gulf Stream Kinetic Energy

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2016

Author(s): Kang, D., E.N. Curchitser and A. Rosati


Project PI: Curchister
DOI: https://doi.org/10.1175/JPO-D-15-0235.1

The seasonal variability of the mean kinetic energy (MKE) and eddy kinetic energy (EKE) of the Gulf Stream (GS) is examined using high-resolution regional ocean model simulations. A set of three numerical experiments with different surface wind and buoyancy forcing is analyzed to investigate the mechanisms governing the seasonal cycle of upper ocean energetics. In the GS along-coast region, MKE has a significant seasonal cycle that peaks in summer, while EKE has two comparable peaks in May and September near the surface; the May peak decays rapidly with depth. In the off-coast region, MKE has a weak seasonal cycle that peaks in summer, while EKE has a dominant peak in May and a secondary peak in September near the surface. The May peak also decays with depth leaving the September peak as the only seasonal signal below 100 m. An analysis of the three numerical experiments suggests that the seasonal variability in the local wind forcing significantly impacts the September peak of the along-coast EKE through a local-flow barotropic instability process. Alternatively, the seasonal buoyancy forcing primarily impacts the flow baroclinic instability and is consequently related to the May peak of the upper ocean EKE in both regions. The analysis results indicate that the seasonal cycle of the along-coast MKE is influenced by both local energy generation by wind and the advection of energy from upstream regions. Finally, the MKE cycle and the September peak of EKE in the off-coast region are mainly affected by advection of energy from remote regions, giving rise to correlations with the seasonal cycle of remote winds.

Energetics Of Eddy-Mean Flow Interactions In The Gulf Stream Region

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2015

Author(s): Kang, D., and E.N. Curchitser


Project PI: Curchister
DOI: https://doi.org/10.1175/JPO-D-14-0200.1

A detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a highresolution multidecadal regional ocean model simulation. The energy equations for the time-mean and timevarying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.



Page 1  of  7First   Previous   [1]  2  3  4  5  6  7  Next   Last  

A look back at 2014: NOAA Climate Program Office articulates roadmap for future progress in climate science

  • 12 January 2015
A look back at 2014: NOAA Climate Program Office articulates roadmap for future progress in climate science

In 2014, NOAA’s Climate Program Office, led by Director Wayne Higgins, went through the process of rearticulating its mission, vision, and unique value through the development of the CPO Strategic Plan. The office also made major progress on an Implementation Plan that provides a roadmap to achieving important outcomes in climate science.

These accomplishments were just one of the highlights of a productive year for NOAA CPO, which continued to make advances in climate observation, research, modeling, and decision support activities for society. We also moved forward with global observations, advanced modeling and prediction capabilities, coastal resilience, drought monitoring and decision-support services, and so many other activities that will help people, businesses and ecosystems thrive in the face of climate and its impacts.

 

Observing the Climate System

NOAA joins with Princeton and other institutions in six-year study to help public better understand Southern Ocean

Princeton University, NOAA and eight other partner institutions now seek to make the Southern Ocean better known scientifically and publicly through a $21 million program that will create a biogeochemical and physical portrait of the ocean using hundreds of robotic floats deployed around Antarctica and an expanded computational capacity. The Southern Ocean Carbon and Climate Observations and Modeling program, or SOCCOM, is a six-year initiative headquartered at Princeton and funded by the National Science Foundation’s Division of Polar Programs, with additional support from the NOAA and NASA. The U.S. Argo program will play a major role in the project.

Deep Argo floats deployed in Pacific

In mid-June, the Research Vessel Tangaroa, operated by New Zealand’s National Institute of Water and Atmospheric Research, set off from Wellington, New Zealand, for the Deep Argo Development cruise. The primary objectives of the cruise were (1) to deploy two prototype Deep Argo (6,000 meter plus) floats and (2) undertake deep (~5500m) CTD casts for sensor testing and development.  In addition, 6 SOLO2 Argo (2,000 meter) floats were deployed in transit, finally, to make a "virtual field trip" for school uptake. The SOLO2 floats and the Deep Argo floats were provided by Scripps Institution of Oceanography as part of NOAA’s Argo Program.

Advancing our Understanding of the Climate System

Developing the Next-Generation CFS

NOAA’s Climate program Office continued to move forward with advancing modeling and prediction capabilities. Along with the National Centers for Environmental Prediction (NCEP), the office co-organized a topical collection of papers presented at a 2012 workshop held to evaluate progress in Climate Forecast System version 2 (CFSv2) performance.  CFSv2 is a couple global climate model used to simulate intraseasonal-to-interannual climate variability. CPO sponsored research significantly contributed to the development of CFSv2. This collection of papers should provide insight for the development of the next generation CFS.

Researchers offer new insights into predicting future droughts in California

A report from the NOAA Drought Task Force, organized by the Modeling, Analysis, and Predictions, and projections (MAPP) Program of NOAA’s Climate Program Office, contributed to a growing field of science-climate attribution--where teams of scientists aim to identify the sources of observed climate and weather patterns. According to the study, natural oceanic and atmospheric patterns are the primary drivers behind California's ongoing drought. Further studies on these oceanic conditions and their effect on California's climate may lead to advances in drought early warning that can help water managers and major industries better prepare for lengthy dry spells in the future.

Understanding aerosol processes using measurements collected from field campaigns

A paper published in the Journal for Atmospheric Chemistry and Physics quantified the performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The scientists concluded that the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes.

Informing Society

President signs NIDIS Reauthorization Act

NOAA’s Climate Program Office played major roles in flagship climate programs, including the reauthorization of the National Integrated Drought Information System (NIDIS). On March 6, President Barack Obama signed the National Integrated Drought Information System Reauthorization Act into law in order to ensure that the federal government can provide timely, effective drought warning forecasts and vital support to communities that are vulnerable to drought. States, cities, towns, farmers, and businesses rely on tools and data from the National Integrated Drought Information System to make informed decisions about water use, crop planting, wildfire response, and other critical areas.  

CPO Supports Major Assessment Reports Released in 2014

CPO’s funded scientists, projects, and program managers contributed to several major assessment reports released over the past year. Among these, the Arctic Research Program in the NOAA Climate Program Office supported the 2014 Arctic Report Card. The latest update confirmed that Arctic air temperatures continue to rise at more than twice the rate of the planet as a whole. Earlier in the year, NOAA and the American Meteorological Society released the 2013 State of the Climate report. The report, a 24-year tradition encompassing the work of 425 authors from 57 countries, uses dozens of climate indicators to track patterns, changes, and trends of the global climate system. Scientific research funded by CPO was also foundational to advancing the 2014 Third National Climate Assessment Report and the Intergovernmental Panel on Climate Change (IPCC) reports.

Climate.gov wins two Webby Awards and a People’s Voice Award

With 12,000 entries from all 50 US states and 60 plus countries and two millions votes in the Webby People’s Voice Awards, the 18th Annual Webby Awards was the biggest yet. NOAA Climate.gov was selected by the International Academy of the Digital Arts & Sciences to receive two Webby Awards in the "Government" and "Green" categories.  The cross-agency team of world-class scientists, data visualizers, web developers, and science writers also garnered a People's Voice Award in the "Green" category (placing second overall in the "Government" category).

Print

x

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.