CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

Marine Top Predators As Climate And Ecosystem Sentinels

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2019

Author(s): Hazen, EL, et al


Project PI: Jacox
DOI: https://doi.org/10.1002/fee.2125

The rapid pace of environmental change in the Anthropocene necessitates the development of a new suite of tools for measuring ecosystem dynamics. Sentinel species can provide insight into ecosystem function, identify hidden risks to human health, and predict future change. As sentinels, marine apex (top) predators offer a unique perspective into ocean processes, given that they can move across ocean basins and amplify trophic information across multiple spatiotemporal scales. Because use of the terms “ecosystem sentinel” and “climate sentinel” has proliferated in the scientific literature, there is a need to identify the properties that make marine predators effective sentinels. We provide a clear definition of the term “sentinel”, review the attributes of species identified as sentinels, and describe how a suite of such sentinels could strengthen our understanding and management of marine ecosystems. We contend that the use of marine predators as ecosystem sentinels will enable rapid response and adaptation to ecosystem variability and change.

Using A Climate-To-Fishery Model To Simulate The Influence Of The 1976-1977 Regime Shift On Anchovy And Sardine In The California Current Ecosystem

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2019

Author(s): Nishikawa, H, EN Curchitser, J Fiechter, KA Rose, K Hedstrom


Project PI: Jacox
DOI: https://doi.org/10.1186/s40645-019-0257-2

The influence of the well-known 1976–1977 regime shift on the Northern anchovy (Engraulis mordax) and the Pacific sardine (Sardinops caeruleus) populations in the California Current System (CCS) is investigated using a climate-to-fishery model. This model consists of four coupled submodels (regional ocean circulation model; Eulerian nutrient-phytoplankton-zooplankton-detritus model; individual-based full life cycle anchovy and sardine model; agent-based fishery model). Analysis of a historical simulation (1958–1990) showed that survival fraction of age-0 anchovy was lower just after 1977, while survival fraction of age-0 sardine was relatively unaffected by the regime shift. The age-0 survival of both species was influenced by the growth in the larval stage. Simulated zooplankton densities in the historical simulation shifted from high to low in 1976–1977 in the CCS, with the shift being most drastic in winter in the coastal area. The model also shows that anchovy larvae feed extensively from winter to early spring in the coastal area, while sardine larvae were mainly distributed in the offshore area. The differential seasonal and spatial responses of zooplankton in the simulation caused anchovy survival to be more sensitive than sardine to the 1976–1977 regime shift. The model-generated zooplankton shift was a result of reduced phytoplankton production due to lowered nutrient concentrations after 1977 due to the weakening of both the coastal upwelling and mixed layer shoaling, which reduced the vertical nutrient flux from the bottom layer to the surface layer.

Lost Opportunity: Quantifying The Dynamic Economic Impact Of Time-Area Fishery Closures

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2019

Author(s): Smith, J.A., Tommasi, D., Sweeney, J., Brodie, S., Welch, H., Hazen, E.L., Muhling, B., Stohs, S.M. and Jacox, M.G.


Project PI: Jacox
DOI: https://doi.org/10.1111/1365-2664.13565

Time-area closures are an important tool for reducing fisheries bycatch, but their effectiveness and economic impact can be influenced by the changes in species distributions. For fisheries targeting highly mobile species, the economic impact of a closure may by highly dynamic, depending on the current suitability of the closed area for the target species.We present an analysis to quantify the fine-scale economic impact of time-area closures: the ‘lost economic opportunity’, which is the percentage of total potential profit for an entire fishing season that occurs within and during a time-area closure. Our analysis integrates a spatially explicit and environment-informed catch model with a utility model that quantifies fishing revenues and costs, and thus incorporates a dynamic target species distribution in the estimated economic impact of a closure. We demonstrate this approach by evaluating the economic impact of the Loggerhead Conservation Area (LCA) on California's drift gillnet swordfish Xiphias gladius fishery.The lost economic opportunity due to the LCA time-area closure ranged from 0% to 6% per season, with variation due to port location and trip duration, as well as inter-annual changes in swordfish distribution. This increased by 40%–90% when a seasonally varying swordfish price was considered. There was a clear signal in economic impact associated with a shift from warm to cool conditions in the California Current following the 1998 El Niño, with increased lost economic opportunity from 1999. This signal was due to higher swordfish catch inside the LCA during the cool phase, associated with increased water column mixing, and due to higher catches outside the LCA in the warmer phase, associated with increased sea-surface temperature.Synthesis and applications. We found small economic impact from a fishery closure, but with meaningful inter-annual variation due to environmental change and the dynamic distribution of a target species. Our approach could be used to help determine the timing of closures, simulate impacts of proposed closures and, more generally, assess some economic consequences of climate-induced shifts in species’ ranges.

Decision-Support Tools For Dynamic Management

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2019

Author(s): Welch, H, S Brodie, MG Jacox, SJ Bograd, EL Hazen


Project PI: Jacox
DOI: https://doi.org/10.1111/cobi.13417

Spatial management is a valuable strategy to advance regional goals for nature conservation, economic development, and human health. One challenge of spatial management is navigating the prioritization of multiple features. This challenge becomes more pronounced in dynamic management scenarios, in which boundaries are flexible in space and time in response to changing biological, environmental, or socioeconomic conditions. To implement dynamic management, decision-support tools are needed to guide spatial prioritization as feature distributions shift under changing conditions. Marxan is a widely applied decision-support tool designed for static management scenarios, but its utility in dynamic management has not been evaluated. EcoCast is a new decision-support tool developed explicitly for the dynamic management of multiple features, but it lacks some of Marxan's functionality. We used a hindcast analysis to compare the capacity of these 2 tools to prioritize 4 marine species in a dynamic management scenario for fisheries sustainability. We successfully configured Marxan to operate dynamically on a daily time scale to resemble EcoCast. The relationship between EcoCast solutions and the underlying species distributions was more linear and less noisy, whereas Marxan solutions had more contrast between waters that were good and poor to fish. Neither decision-support tool clearly outperformed the other; the appropriateness of each depends on management purpose, resource-manager preference, and technological capacity of tool developers.

Views From The Dock: Warming Waters, Adaptation, And The Future Of Maine’S Lobster Fishery

Project: Predicting social impacts of climate change in fisheries
Year: 2020

Author(s): McClenachan L, SB Scyphers, JH Grabowski


Project PI: Scyphers
DOI: https://doi.org/10.1007/s13280-019-01156-3

The ability of resource-dependent communities to adapt to climate change depends in part on their perceptions and prioritization of specific climate-related threats. In the Maine lobster fishery, which is highly vulnerable to warming water associated with climate change, we found a strong majority (84%) of fishers viewed warming water as a threat, but rank its impacts lower than other drivers of change (e.g., pollution). Two-thirds believed they will be personally affected by warming waters, but only half had plans to adapt. Those with adaptation plans demonstrated fundamentally different views of human agency in this system, observing greater anthropogenic threats, but also a greater ability to control the fishery through their own actions on the water and fisheries management processes. Lack of adaptation planning was linked to the view that warming waters result from natural cycles, and the expectation that technological advancements will help buffer the industry from warming waters.

The Effect Of Ocean Warming On Black Sea Bass (Centropristis Striata) Physiology.

Project: Indicators of habitat change affecting three key commercial species of the U.S. Northeast Shelf: A design to facilitate proactive management in the face of climate change
Year: 2020

Author(s): Slesinger, E., Saba, G., Young, R., Andres, A., Saba, V., Phelan, B., Rosendale, J., Wieczorek, D., Seibel, B.


Project PI: Saba
DOI: https://doi.org/10.1371/journal.pone.0244002

Over the last decade, ocean temperature on the U.S. Northeast Continental Shelf (U.S. NES) has warmed faster than the global average and is associated with observed distribution changes of the northern stock of black sea bass (Centropristis striata). Mechanistic models based on physiological responses to environmental conditions can improve future habitat suitability projections. We measured maximum, standard metabolic rate, and hypoxia tolerance (Scrit) of the northern adult black sea bass stock to assess performance across the known temperature range of the species. Two methods, chase and swim-flume, were employed to obtain maximum metabolic rate to examine whether the methods varied, and if so, the impact on absolute aerobic scope. A subset of individuals was held at 30˚C for one month (30chronic˚C) prior to experiments to test acclimation potential. Absolute aerobic scope (maximum–standard metabolic rate) reached a maximum of 367.21 mgO2 kg-1 hr-1 at 24.4˚C while Scrit continued to increase in proportion to standard metabolic rate up to 30˚C. The 30chronic˚C group exhibited a significantly lower maximum metabolic rate and absolute aerobic scope in relation to the short-term acclimated group, but standard metabolic rate or Scrit were not affected. This suggests a decline in performance of oxygen demand processes (e.g. muscle contraction) beyond 24˚C despite maintenance of oxygen supply. The Metabolic Index, calculated from Scrit as an estimate of potential aerobic scope, closely matched the measured factorial aerobic scope (maximum / standard metabolic rate) and declined with increasing temperature to a minimum below 3. This may represent a critical threshold value for the species. With temperatures on the U.S. NES projected to increase above 24˚C in the next 80-years in the southern portion of the northern stock’s range, it is likely black sea bass range will continue to shift poleward as the ocean continues to warm.

Comparing And Synthesizing Quantitative Distribution Models And Qualitative Vulnerability Assessments To Project Marine Species Distributions Under Climate Change

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2020

Author(s): Allyn, A. J., M. A. Alexander, B. S. Franklin, F. Massiot-Granier, A. J. Pershing, J. D. Scott, and K. E. Mills.


Project PI: Mills
DOI: https://doi.org/10.1371/journal.pone.0231595

Species distribution shifts are a widely reported biological consequence of climate-driven warming across marine ecosystems, creating ecological and social challenges. To meet these challenges and inform management decisions, we need accurate projections of species distributions. Quantitative species distribution models (SDMs) are routinely used to make these projections, while qualitative climate change vulnerability assessments are becoming more common. We constructed SDMs, compared SDM projections to expectations from a qualitative expert climate change vulnerability assessment, and developed a novel approach for combining the two methods to project the distribution and relative biomass of 49 marine species in the Northeast Shelf Large Marine Ecosystem under a “business as usual” climate change scenario. A forecasting experiment using SDMs highlighted their ability to capture relative biomass patterns fairly well (mean Pearson’s correlation coefficient between predicted and observed biomass = 0.24, range = 0–0.6) and pointed to areas needing improvement, including reducing prediction error and better capturing fine-scale spatial variability. SDM projections suggest the region will undergo considerable biological changes, especially in the Gulf of Maine, where commercially-important groundfish and traditional forage species are expected to decline as coastal fish species and warmer-water forage species historically found in the southern New England/Mid-Atlantic Bight area increase. The SDM projections only occasionally aligned with vulnerability assessment expectations, with agreement more common for species with adult mobility and population growth rates that showed low sensitivity to climate change. Although our blended approach tried to build from the strengths of each method, it had no noticeable improvement in predictive ability over SDMs. This work rigorously evaluates the predictive ability of SDMs, quantifies expected species distribution shifts under future climate conditions, and tests a new approach for integrating SDMs and vulnerability assessments to help address the complex challenges arising from climate-driven species distribution shifts.

Thermal Displacement By Marine Heatwaves

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2020

Author(s): Jacox, M.G., Alexander, M.A., Bograd, S.J. et al


Project PI: Jacox
DOI: https://doi.org/10.1038/s41586-020-2534-z

Marine heatwaves (MHWs)—discrete but prolonged periods of anomalously warm ocean temperatures—can drastically alter ocean ecosystems, with profound ecological and socioeconomic impacts1,2,3,4,5,6,7,8. Considerable effort has been directed at understanding the patterns, drivers and trends of MHWs globally9,10,11. Typically, MHWs are characterized on the basis of their intensity and persistence at a given location—an approach that is particularly relevant for corals and other sessile organisms that must endure increased temperatures. However, many ecologically and commercially important marine species respond to environmental disruptions by relocating to favourable habitats, and dramatic range shifts of mobile marine species are among the conspicuous impacts of MHWs1,4,12,13. Whereas spatial temperature shifts have been studied extensively in the context of long-term warming trends14,15,16,17,18, they are unaccounted for in existing global MHW analyses. Here we introduce thermal displacement as a metric that characterizes MHWs by the spatial shifts of surface temperature contours, instead of by local temperature anomalies, and use an observation-based global sea surface temperature dataset to calculate thermal displacements for all MHWs from 1982 to 2019. We show that thermal displacements during MHWs vary from tens to thousands of kilometres across the world’s oceans and do not correlate spatially with MHW intensity. Furthermore, short-term thermal displacements during MHWs are of comparable magnitude to century-scale shifts inferred from warming trends18, although their global spatial patterns are very different. These results expand our understanding of MHWs and their potential impacts on marine species, revealing which regions are most susceptible to thermal displacement, and how such shifts may change under projected ocean warming. The findings also highlight the need for marine resource management to account for MHW-driven spatial shifts, which are of comparable scale to those associated with long-term climate change and are already happening.

The Response Of The Northwest Atlantic Ocean To Climate Change

Project: From physics to fisheries: A social-ecological management strategy evaluationfor the California Current Large Marine Ecosystem
Year: 2020

Author(s): Alexander, M. A., S. Shin, J. D. Scott, E. Curchitser, C. Stock


Project PI: Jacox
DOI: https://doi.org/10.1175/JCLI-D-19-0117.1

ROMS, a high-resolution regional ocean model, was used to study how climate change may affect the northwestern Atlantic Ocean. A control (CTRL) simulation was conducted for the recent past (1976–2005), and simulations with additional forcing at the surface and lateral boundaries, obtained from three different global climate models (GCMs) using the RCP8.5 scenario, were conducted to represent the future (2070–99). The climate change response was obtained from the difference between the CTRL and each of the three future simulations. All three ROMS simulations indicated large increases in sea surface temperatures (SSTs) over most of the domain except off the eastern U.S. seaboard resulting from weakening of the Gulf Stream. There are also substantial intermodel differences in the response, including a southward shift of the Gulf Stream in one simulation and a slight northward shift in the other two, with corresponding changes in eddy activity. The depth of maximum warming varied among the three simulations, resulting in differences in the bottom temperature response in coastal regions, including the Gulf of Maine and the West Florida Shelf. The surface salinity decreased in the northern part of the domain and increased in the south in all three experiments, although the freshening extended much farther south in one ROMS simulation relative to the other two, and also relative to the GCM that provided the large-scale forcing. Thus, while high resolution allows for a better representation of currents and bathymetry, the response to climate change can vary considerably depending on the large-scale forcing.

Changes To The Structure And Function Of An Albacore Fishery Reveal Shifting Social–Ecological Realities For Pacific Northwest Fishermen

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2020

Author(s): Frawley T. H. et al


Project PI: Jacox
DOI: https://doi.org/10.1111/faf.12519

Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.



Page 3  of  7First   Previous   1  2  [3]  4  5  6  7  Next   Last  

A look back at 2014: NOAA Climate Program Office articulates roadmap for future progress in climate science

  • 12 January 2015
A look back at 2014: NOAA Climate Program Office articulates roadmap for future progress in climate science

In 2014, NOAA’s Climate Program Office, led by Director Wayne Higgins, went through the process of rearticulating its mission, vision, and unique value through the development of the CPO Strategic Plan. The office also made major progress on an Implementation Plan that provides a roadmap to achieving important outcomes in climate science.

These accomplishments were just one of the highlights of a productive year for NOAA CPO, which continued to make advances in climate observation, research, modeling, and decision support activities for society. We also moved forward with global observations, advanced modeling and prediction capabilities, coastal resilience, drought monitoring and decision-support services, and so many other activities that will help people, businesses and ecosystems thrive in the face of climate and its impacts.

 

Observing the Climate System

NOAA joins with Princeton and other institutions in six-year study to help public better understand Southern Ocean

Princeton University, NOAA and eight other partner institutions now seek to make the Southern Ocean better known scientifically and publicly through a $21 million program that will create a biogeochemical and physical portrait of the ocean using hundreds of robotic floats deployed around Antarctica and an expanded computational capacity. The Southern Ocean Carbon and Climate Observations and Modeling program, or SOCCOM, is a six-year initiative headquartered at Princeton and funded by the National Science Foundation’s Division of Polar Programs, with additional support from the NOAA and NASA. The U.S. Argo program will play a major role in the project.

Deep Argo floats deployed in Pacific

In mid-June, the Research Vessel Tangaroa, operated by New Zealand’s National Institute of Water and Atmospheric Research, set off from Wellington, New Zealand, for the Deep Argo Development cruise. The primary objectives of the cruise were (1) to deploy two prototype Deep Argo (6,000 meter plus) floats and (2) undertake deep (~5500m) CTD casts for sensor testing and development.  In addition, 6 SOLO2 Argo (2,000 meter) floats were deployed in transit, finally, to make a "virtual field trip" for school uptake. The SOLO2 floats and the Deep Argo floats were provided by Scripps Institution of Oceanography as part of NOAA’s Argo Program.

Advancing our Understanding of the Climate System

Developing the Next-Generation CFS

NOAA’s Climate program Office continued to move forward with advancing modeling and prediction capabilities. Along with the National Centers for Environmental Prediction (NCEP), the office co-organized a topical collection of papers presented at a 2012 workshop held to evaluate progress in Climate Forecast System version 2 (CFSv2) performance.  CFSv2 is a couple global climate model used to simulate intraseasonal-to-interannual climate variability. CPO sponsored research significantly contributed to the development of CFSv2. This collection of papers should provide insight for the development of the next generation CFS.

Researchers offer new insights into predicting future droughts in California

A report from the NOAA Drought Task Force, organized by the Modeling, Analysis, and Predictions, and projections (MAPP) Program of NOAA’s Climate Program Office, contributed to a growing field of science-climate attribution--where teams of scientists aim to identify the sources of observed climate and weather patterns. According to the study, natural oceanic and atmospheric patterns are the primary drivers behind California's ongoing drought. Further studies on these oceanic conditions and their effect on California's climate may lead to advances in drought early warning that can help water managers and major industries better prepare for lengthy dry spells in the future.

Understanding aerosol processes using measurements collected from field campaigns

A paper published in the Journal for Atmospheric Chemistry and Physics quantified the performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The scientists concluded that the combined CalNex and CARES data sets are an ideal test bed that can be used to evaluate aerosol models in great detail and develop improved treatments for aerosol processes.

Informing Society

President signs NIDIS Reauthorization Act

NOAA’s Climate Program Office played major roles in flagship climate programs, including the reauthorization of the National Integrated Drought Information System (NIDIS). On March 6, President Barack Obama signed the National Integrated Drought Information System Reauthorization Act into law in order to ensure that the federal government can provide timely, effective drought warning forecasts and vital support to communities that are vulnerable to drought. States, cities, towns, farmers, and businesses rely on tools and data from the National Integrated Drought Information System to make informed decisions about water use, crop planting, wildfire response, and other critical areas.  

CPO Supports Major Assessment Reports Released in 2014

CPO’s funded scientists, projects, and program managers contributed to several major assessment reports released over the past year. Among these, the Arctic Research Program in the NOAA Climate Program Office supported the 2014 Arctic Report Card. The latest update confirmed that Arctic air temperatures continue to rise at more than twice the rate of the planet as a whole. Earlier in the year, NOAA and the American Meteorological Society released the 2013 State of the Climate report. The report, a 24-year tradition encompassing the work of 425 authors from 57 countries, uses dozens of climate indicators to track patterns, changes, and trends of the global climate system. Scientific research funded by CPO was also foundational to advancing the 2014 Third National Climate Assessment Report and the Intergovernmental Panel on Climate Change (IPCC) reports.

Climate.gov wins two Webby Awards and a People’s Voice Award

With 12,000 entries from all 50 US states and 60 plus countries and two millions votes in the Webby People’s Voice Awards, the 18th Annual Webby Awards was the biggest yet. NOAA Climate.gov was selected by the International Academy of the Digital Arts & Sciences to receive two Webby Awards in the "Government" and "Green" categories.  The cross-agency team of world-class scientists, data visualizers, web developers, and science writers also garnered a People's Voice Award in the "Green" category (placing second overall in the "Government" category).

Print

x

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.