CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

An Numerical Model Analysis of the Mean and Seasonal Nitrogen Budget on the Northeast U.S. Shelf.

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2018

Author(s): Zhang. S., C. A. Stock, E. N. Curchitser, and R. Dussin


Project PI: Curchister
DOI: http://DOI:10.1029/2018JC014308

The supply of nitrogen is a primary limiting factor for the productivity of the Northeast United States (NEUS) continental shelf. In this study, a 12-year (1996–2007) retrospective physical-biogeochemical simulation over the Northwest Atlantic was used to analyze the mean and seasonal NEUS shelf nitrogen budget, including the connections between shelf subregions: the Gulf of Maine/Georges Bank (GoM/GB), and the Mid-Atlantic Bight (MAB). The model captures the primary mean and seasonal patterns of shelf circulation, nitrate, and plankton dynamics. Results confirm aspects of previous nitrogen budget analyses, including the dominance of offshore nitrogen influxes into the GoM/GB and the prominent role of riverine influxes and sedimentary denitrification in the MAB. However, detailed spatiotemporal analysis of nitrogen fluxes highlights the importance of dispersed inflows of shallow to intermediate depth waters (0–75 m), which can at times exceed the deep nitrogen influx emphasized in previous studies. A seasonal analysis shows a pronounced shift from the net import of nitrogen to the GoM/GB region during late fall and winter, to the net export of nitrogen from the region in the spring and early summer. The MAB, in contrast, consistently exports nitrogen to offshore waters. The prominence of the 0-75m nitrogen supply has implications for the roles of Labrador Slope Water and Atlantic Temperate Slope Water on the NEUS ecosystems, as Atlantic Temperate Slope Water has greater nitrate concentrations than Labrador Slope Water at depth but often less at the surface. Results suggest the need for further study of shallow to intermediate depth inflows beyond those from the Scotian Shelf, particularly during the fall/winter of net nitrogen inflow.

Impacts of Mesoscale Eddies on the Vertical Nitrate Flux in the Gulf Stream Region

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2018

Author(s): Zhang, S., E.N. Curchitser, D. Kang, C.A. Stock and R. Dussin


Project PI: Curchister
DOI: http:// https://doi.org/10.1002/2017JC013402

The Gulf Stream (GS) region has intense mesoscale variability that can affect the supply of nutrients to the euphotic zone (Zeu). In this study, a recently developed high-resolution coupled physical-biological model is used to conduct a 25-year simulation in the Northwest Atlantic. The Reynolds decomposition method is applied to quantify the nitrate budget and shows that the mesoscale variability is important to the vertical nitrate supply over the GS region. The decomposition, however, cannot isolate eddy effects from those arising from other mesoscale phenomena. This limitation is addressed by analyzing a large sample of eddies detected and tracked from the 25-year simulation. The eddy composite structures indicate that positive nitrate anomalies within Zeu exist in both cyclonic eddies (CEs) and anticyclonic eddies (ACEs) over the GS region, and are even more pronounced in the ACEs. Our analysis further indicates that positive nitrate anomalies mostly originate from enhanced vertical advective flux rather than vertical turbulent diffusion. The eddy-wind interaction-induced Ekman pumping is very likely the mechanism driving the enhanced vertical motions and vertical nitrate transport within ACEs. This study suggests that the ACEs in GS region may play an important role in modulating the oceanic biogeochemical properties by fueling local biomass production through the persistent supply of nitrate.

Preparing ocean governance for species on the move

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2018

Author(s): Pinsky, M.L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J. & Cheung, W.W.L.


Project PI: Pinsky
DOI: http://doi.org/10.1126/science.aat2360

The ocean is a critical source of nutrition for billions of people, with potential to yield further food, profits, and employment in the future (1). But fisheries face a serious new challenge as climate change drives the ocean to conditions not experienced historically. Local, national, regional, and international fisheries are substantially underprepared for geographic shifts in marine animals driven by climate change over the coming decades. Fish and other animals have already shifted into new territory at a rate averaging 70 km per decade (2), and these shifts are expected to continue or accelerate (3). We show here that many species will likely shift across national and other political boundaries in the coming decades, creating the potential for conflict over newly shared resources.

Projecting shifts in thermal habitat for 686 species on the North American continental shelf

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2018

Author(s): Morley, J. W., Selden, R. L., Latour, R. J., Frölicher, T. L., Seagraves, R. J., & Pinsky, M. L. (


Project PI: Pinsky
DOI: http://doi.org/10.1371/journal.pone.0196127

Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.

Innovations In Collaborative Science: Advancing Citizen Science, Crowdsourcing And Participatory Modeling To Understand And Manage Marine Social–Ecological Systems

Project: Predicting social impacts of climate change in fisheries
Year: 2017

Author(s): Gray SA, SB Scyphers


Project PI: Scyphers
DOI: https://doi.org/10.1016/B978-0-12-805375-1.00022-2

Including stakeholders in environmental monitoring and research has been an increasingly recognized necessity for understanding the complex nature of marine social–ecological systems (SES). Stakeholder engagement and participation is often an essential ingredient for successful conservation and management. As a result, new inclusive approaches to scientific research have emerged under a broad umbrella often referred to as “citizen science.” These are collaborative research efforts that include stakeholders in the scientific process and strive to in various ways (1) decrease uncertainty of the dynamics of marine SES through collaborative data collection; (2) harness the expertise and knowledge of stakeholders that rely on marine resources to better understand these systems; and (3) provide a venue for more inclusive forms of resource and ecosystem management decision-making. Although the literature on citizen science shows that it is a popular way to collaboratively understand and collaboratively make decisions about natural resources, to date there is little information about how citizen science can specifically support social–ecological research and participatory decision-making in marine systems. In this chapter, we provide an overview of how participatory approaches to citizen science have been applied in marine research. Further, we theorize about the role that emerging online technologies may play in the future for collaborative science, decision-making, and marine policy.

Dynamic Habitat Use Of Albacore And Their Primary Prey Species In The California Current System

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2017

Author(s): Muhling, Barbara, et al.


Project PI: Jacox
DOI: https://calcofi.org/publications/calcofireports/v60/Vol60-Muhling.pdf

Juvenile north Pacific albacore (Thunnus alalunga) forage in the California Current System (CCS), supporting fisheries between Baja California and British Columbia. Within the CCS, their distribution, abundance, and foraging behaviors are strongly variable interannually. Here, we use catch logbook data and trawl survey records to investigate how juvenile albacore in the CCS use their oceanographic environment, and how their distributions overlap with the habitats of four key forage species. We show that northern anchovy (Engraulis mordax) and hake (Merluccius productus) habitat is associated with productive coastal waters found more inshore of core juvenile albacore habitat, whereas Pacific sardine (Sardinops sagax) and boreal clubhook squid (Onychoteuthis borealijaponica) habitat overlaps more consistently with that of albacore. Our results can improve understanding of how albacore movements relate to foraging strategies, and why preyswitching behavior occurs. This has relevance for the development of ecosystem models for the CCS, and for the eventual implementation of ecosystem-based fishery management.

On the Evaluation of Seasonal Variability of the Ocean Kinetic Energy

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2017

Author(s): Kang, Dujuan, and Enrique N. Curchitser


Project PI: Curchister
DOI: http://https://doi.org/10.1175/JPO-D-17-0063.1

The seasonal cycles of the mean kinetic energy (MKE) and eddy kinetic energy (EKE) are compared in an idealized flow as well as in a realistic simulation of the Gulf Stream (GS) region based on three commonly used definitions: orthogonal, nonorthogonal, and moving-average filtered decompositions of the kinetic energy (KE). It is shown that only the orthogonal KE decomposition can define the physically consistent MKE and EKE that precisely represents the KEs of the mean flow and eddies, respectively. The nonorthogonal KE decomposition gives rise to a residual term that contributes to the seasonal variability of the eddies, and therefore the obtained EKE is not precisely defined. The residual term is shown to exhibit more significant seasonal variability than EKE in both idealized and realistic GS flows. Neglecting its influence leads to an inaccurate evaluation of the seasonal variability of both the eddies and the total flow. The decomposition using a moving-average filter also results in a nonnegligible residual term in both idealized and realistic GS flows. This type of definition does not ensure conservation of the total KE, even if taking into account the residual term. Moreover, it is shown that the annual cycles of the three types of EKEs or MKEs have different phases and amplitudes. The local differences of the EKE cycles are very prominent in the GS off-coast domain; however, because of the spatial inhomogeneity, the area-mean differences may not be significant.

Seasonal Variability Of The Gulf Stream Kinetic Energy

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2016

Author(s): Kang, D., E.N. Curchitser and A. Rosati


Project PI: Curchister
DOI: https://doi.org/10.1175/JPO-D-15-0235.1

The seasonal variability of the mean kinetic energy (MKE) and eddy kinetic energy (EKE) of the Gulf Stream (GS) is examined using high-resolution regional ocean model simulations. A set of three numerical experiments with different surface wind and buoyancy forcing is analyzed to investigate the mechanisms governing the seasonal cycle of upper ocean energetics. In the GS along-coast region, MKE has a significant seasonal cycle that peaks in summer, while EKE has two comparable peaks in May and September near the surface; the May peak decays rapidly with depth. In the off-coast region, MKE has a weak seasonal cycle that peaks in summer, while EKE has a dominant peak in May and a secondary peak in September near the surface. The May peak also decays with depth leaving the September peak as the only seasonal signal below 100 m. An analysis of the three numerical experiments suggests that the seasonal variability in the local wind forcing significantly impacts the September peak of the along-coast EKE through a local-flow barotropic instability process. Alternatively, the seasonal buoyancy forcing primarily impacts the flow baroclinic instability and is consequently related to the May peak of the upper ocean EKE in both regions. The analysis results indicate that the seasonal cycle of the along-coast MKE is influenced by both local energy generation by wind and the advection of energy from upstream regions. Finally, the MKE cycle and the September peak of EKE in the off-coast region are mainly affected by advection of energy from remote regions, giving rise to correlations with the seasonal cycle of remote winds.

Energetics Of Eddy-Mean Flow Interactions In The Gulf Stream Region

Project: A high-resolution physical-biological study of the Northeast U.S. shelf: past variability and future change
Year: 2015

Author(s): Kang, D., and E.N. Curchitser


Project PI: Curchister
DOI: https://doi.org/10.1175/JPO-D-14-0200.1

A detailed energetics analysis of the Gulf Stream (GS) and associated eddies is performed using a highresolution multidecadal regional ocean model simulation. The energy equations for the time-mean and timevarying flows are derived as a theoretical framework for the analysis. The eddy–mean flow energy components and their conversions show complex spatial distributions. In the along-coast region, the cross-stream and cross-bump variations are seen in the eddy–mean flow energy conversions, whereas in the off-coast region, a mixed positive–negative conversion pattern is observed. The local variations of the eddy–mean flow interaction are influenced by the varying bottom topography. When considering the domain-averaged energetics, the eddy–mean flow interaction shows significant along-stream variability. Upstream of Cape Hatteras, the energy is mainly transferred from the mean flow to the eddy field through barotropic and baroclinic instabilities. Upon separating from the coast, the GS becomes highly unstable and both energy conversions intensify. When the GS flows into the off-coast region, an inverse conversion from the eddy field to the mean flow dominates the power transfer. For the entire GS region, the mean current is intrinsically unstable and transfers 28.26 GW of kinetic energy and 26.80 GW of available potential energy to the eddy field. The mesoscale eddy kinetic energy is generated by mixed barotropic and baroclinic instabilities, contributing 28.26 and 9.15 GW, respectively. Beyond directly supplying the barotropic pathway, mean kinetic energy also provides 11.55 GW of power to mean available potential energy and subsequently facilitates the baroclinic instability pathway.



Page 7  of  7First   Previous   3  4  5  6  [7]  Next   Last  

Climate-related extreme events can, but do not consistently, motivate change for water managers

  • 13 May 2020
Climate-related extreme events can, but do not consistently, motivate change for water managers

Extreme events like drought can create a window of opportunity for policy change, but they do not always seem to drive organizations toward adaptation. With communities across the Western U.S. facing increasing drought risks, new research, led by the Western Water Assessment (a CPO RISA team) and funded by the Sectoral Applications Research Program’s (SARP) Coping with Drought initiative in partnership with the National Integrated Drought Information System (NIDIS), studied how water managers responded in the wake of two significant Western Colorado droughts in 2002 and 2012 to better understand what motivates adaptive change. Through interviews and focus groups, overall they found that systems did not uniformly decide to change their policies in the wake of drought, and even well-prepared systems were driven to change policies by other pressures, such as peer-system pressure and political pressure from residents. However, political pressure can both help and hinder the adaptation process. According to the authors, organizational worldviews were important mediators of whether or not the experience of drought manifested in organizational changes. Their findings have important implications for assumptions about what might drive organizational learning and change among water managers for climate adaptation in the future.

View the study »

 
Print

x

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.