CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

Adaptation And Resilience Of Commercial Fishers In The Northeast United States During The Early Stages Of The Covid-19 Pandemic

Project: Adapting to changes in fishing opportunity portfolios: abundance, availability, and access
Year: 2020

Author(s): Smith, S. L., Golden, A. S., Ramenzoni, V., Zemeckis, D. R., & Jensen, O. P.


Project PI: Ramenzoni
DOI: https://doi.org/10.1371/journal.pone.0243886

Commercial fisheries globally experienced numerous and significant perturbations during the early months of the COVID-19 pandemic, affecting the livelihoods of millions of fishers worldwide. In the Northeast United States, fishers grappled with low prices and disruptions to export and domestic markets, leaving many tied to the dock, while others found ways to adapt to the changing circumstances brought about by the pandemic. This paper investigates the short-term impacts of the early months of the COVID-19 pandemic (March-June 2020) on commercial fishers in the Northeast U.S. to understand the effects of the pandemic on participation in the fishery and fishers’ economic outcomes, using data collected from an online survey of 258 Northeast U.S. commercial fishers. This research also assesses characteristics of those fishers who continued fishing and their adaptive strategies to the changing circumstances. Analysis of survey responses found the majority of fishers continued fishing during the early months of the pandemic, while a significant number had stopped fishing. Nearly all reported a loss of income, largely driven by disruptions of export markets, the loss of restaurant sales, and a resulting decline in seafood prices. Landings data demonstrate that while fishing pressure in 2020 was reduced for some species, it remained on track with previous years for others. Fishers reported engaging in a number of adaptation strategies, including direct sales of seafood, switching species, and supplementing their income with government payments or other sources of income. Many fishers who had stopped fishing indicated plans to return, suggesting refraining from fishing as a short-term adaptation strategy, rather than a plan to permanently stop fishing. Despite economic losses, fishers in the Northeast U.S. demonstrated resilience in the face of the pandemic by continuing to fish and implementing other adaptation strategies rather than switching to other livelihoods.

Climate Change May Cause Shifts In Growth And Instantaneous Natural Mortality Of American Shad Throughout Their Native Range

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2021

Author(s): Gilligan Lunda, E. K., Stich, D. S., Mills, K. E., Bailey, M. M., & Zydlewski, J. D.


Project PI: Mills
DOI: https://doi.org/10.1002/tafs.10299

American Shad (Alosa sapidissima) is an anadromous species with populations ranging along the U.S. Atlantic coast. Past American Shad stock assessments have been data limited and estimating system-specific growth parameters or instantaneous natural mortality (M) was not possible. This precluded system-specific stock assessment and management due to reliance on these parameters for estimating other population dynamics (such as yield per recruit). Furthermore, climate-informed biological reference points remain a largely unaddressed need in American Shad stock assessment. Population abundance estimates of American Shad and other species often rely heavily on M derived from von Bertalanffy growth function (VBGF) parameters. Therefore, we developed Bayesian hierarchical models to estimate coastwide, regional, and system-specific VBGF parameters and M using data collected from 1982 to 2017. We tested predictive performance of models that included effects of various climate variables on VBGF parameters within these models. System-specific models were better supported than regional or coast-wide models. Mean asymptotic length (L∞) decreased with increasing mean annual sea surface temperature (SST) and degree days (DD) experienced by fish during their lifetime. Although uncertain, K (Brody growth coefficient) decreased over the same range of lifetime SST and DD. Assuming no adaptation, we projected changes in VBGF parameters and M through 2099 using modeled SST from two climate projection scenarios (Representative Concentration Pathways 4.5 and 8.5). We predicted reduced growth under both scenarios, and M was projected to increase by about 0.10. It is unclear how reduced growth and increased mortality may influence population productivity or life history adaptation in the future, but our results may inform stock assessment models to assess those trade-offs.American Shad Alosa sapidissima is an anadromous species with populations ranging along the U.S. Atlantic coast. Past American Shad stock assessments have been data limited and estimating system-specific growth parameters or instantaneous natural mortality (M) was not possible. This precluded system-specific stock assessment and management due to reliance on these parameters for estimating other population dynamics (such as yield per recruit). Furthermore, climate-informed biological reference points remain a largely unaddressed need in American Shad stock assessment. Population abundance estimates of American Shad and other species often rely heavily on M derived from von Bertalanffy growth function (VBGF) parameters. Therefore, we developed Bayesian hierarchical models to estimate coastwide, regional, and system-specific VBGF parameters and M using data collected from 1982 to 2017. We tested predictive performance of models that included effects of various climate variables on VBGF parameters within these models. System-specific models were better supported than regional or coast-wide models. Mean asymptotic length (L∞) decreased with increasing mean annual sea surface temperature (SST) and degree days (DD) experienced by fish during their lifetime. Although uncertain, K (Brody growth coefficient) decreased over the same range of lifetime SST and DD. Assuming no adaptation, we projected changes in VBGF parameters and M through 2099 using modeled SST from two climate projection scenarios (Representative Concentration Pathways 4.5 and 8.5). We predicted reduced growth under both scenarios, and M was projected to increase by about 0.10. It is unclear how reduced growth and increased mortality may influence population productivity or life history adaptation in the future, but our results may inform stock assessment models to assess those trade-offs.

Preparing ocean governance for species on the move

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2018

Author(s): Pinsky, M.L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J. & Cheung, W.W.L.


Project PI: Pinsky
DOI: http://doi.org/10.1126/science.aat2360

The ocean is a critical source of nutrition for billions of people, with potential to yield further food, profits, and employment in the future (1). But fisheries face a serious new challenge as climate change drives the ocean to conditions not experienced historically. Local, national, regional, and international fisheries are substantially underprepared for geographic shifts in marine animals driven by climate change over the coming decades. Fish and other animals have already shifted into new territory at a rate averaging 70 km per decade (2), and these shifts are expected to continue or accelerate (3). We show here that many species will likely shift across national and other political boundaries in the coming decades, creating the potential for conflict over newly shared resources.

Projecting shifts in thermal habitat for 686 species on the North American continental shelf

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2018

Author(s): Morley, J. W., Selden, R. L., Latour, R. J., Frölicher, T. L., Seagraves, R. J., & Pinsky, M. L. (


Project PI: Pinsky
DOI: http://doi.org/10.1371/journal.pone.0196127

Recent shifts in the geographic distribution of marine species have been linked to shifts in preferred thermal habitats. These shifts in distribution have already posed challenges for living marine resource management, and there is a strong need for projections of how species might be impacted by future changes in ocean temperatures during the 21st century. We modeled thermal habitat for 686 marine species in the Atlantic and Pacific oceans using long-term ecological survey data from the North American continental shelves. These habitat models were coupled to output from sixteen general circulation models that were run under high (RCP 8.5) and low (RCP 2.6) future greenhouse gas emission scenarios over the 21st century to produce 32 possible future outcomes for each species. The models generally agreed on the magnitude and direction of future shifts for some species (448 or 429 under RCP 8.5 and RCP 2.6, respectively), but strongly disagreed for other species (116 or 120 respectively). This allowed us to identify species with more or less robust predictions. Future shifts in species distributions were generally poleward and followed the coastline, but also varied among regions and species. Species from the U.S. and Canadian west coast including the Gulf of Alaska had the highest projected magnitude shifts in distribution, and many species shifted more than 1000 km under the high greenhouse gas emissions scenario. Following a strong mitigation scenario consistent with the Paris Agreement would likely produce substantially smaller shifts and less disruption to marine management efforts. Our projections offer an important tool for identifying species, fisheries, and management efforts that are particularly vulnerable to climate change impacts.

Comparing And Synthesizing Quantitative Distribution Models And Qualitative Vulnerability Assessments To Project Marine Species Distributions Under Climate Change

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2020

Author(s): Allyn, A. J., M. A. Alexander, B. S. Franklin, F. Massiot-Granier, A. J. Pershing, J. D. Scott, and K. E. Mills.


Project PI: Mills
DOI: https://doi.org/10.1371/journal.pone.0231595

Species distribution shifts are a widely reported biological consequence of climate-driven warming across marine ecosystems, creating ecological and social challenges. To meet these challenges and inform management decisions, we need accurate projections of species distributions. Quantitative species distribution models (SDMs) are routinely used to make these projections, while qualitative climate change vulnerability assessments are becoming more common. We constructed SDMs, compared SDM projections to expectations from a qualitative expert climate change vulnerability assessment, and developed a novel approach for combining the two methods to project the distribution and relative biomass of 49 marine species in the Northeast Shelf Large Marine Ecosystem under a “business as usual” climate change scenario. A forecasting experiment using SDMs highlighted their ability to capture relative biomass patterns fairly well (mean Pearson’s correlation coefficient between predicted and observed biomass = 0.24, range = 0–0.6) and pointed to areas needing improvement, including reducing prediction error and better capturing fine-scale spatial variability. SDM projections suggest the region will undergo considerable biological changes, especially in the Gulf of Maine, where commercially-important groundfish and traditional forage species are expected to decline as coastal fish species and warmer-water forage species historically found in the southern New England/Mid-Atlantic Bight area increase. The SDM projections only occasionally aligned with vulnerability assessment expectations, with agreement more common for species with adult mobility and population growth rates that showed low sensitivity to climate change. Although our blended approach tried to build from the strengths of each method, it had no noticeable improvement in predictive ability over SDMs. This work rigorously evaluates the predictive ability of SDMs, quantifies expected species distribution shifts under future climate conditions, and tests a new approach for integrating SDMs and vulnerability assessments to help address the complex challenges arising from climate-driven species distribution shifts.

Challenges To Natural And Human Communities From Surprising Ocean Temperatures

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2019

Author(s): Pershing, A. J., N. R. Record, B. S. Franklin, B. T. Kennedy, L. McClenachan, K. E. Mills, J. D. Scott, A. C. Thomas, and N. H. Wolff.


Project PI: Mills
DOI: https://doi.org/10.1073/pnas.1901084116

The community of species, human institutions, and human activities at a given location have been shaped by historical conditions (both mean and variability) at that location. Anthropogenic climate change is now adding strong trends on top of existing natural variability. These trends elevate the frequency of “surprises”—conditions that are unexpected based on recent history. Here, we show that the frequency of surprising ocean temperatures has increased even faster than expected based on recent temperature trends. Using a simple model of human adaptation, we show that these surprises will increasingly challenge natural modes of adaptation that rely on historical experience. We also show that warming rates are likely to shift natural communities toward generalist species, reducing their productivity and diversity. Our work demonstrates increasing benefits for individuals and institutions from betting that trends will continue, but this strategy represents a radical shift that will be difficult for many to make.

Scientific Considerations Informing Magnuson-Stevens Fishery Conservation And Management Act Reauthorization.

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2018

Author(s): Miller, T., C. M. Jones, C. Hanson, S. Heppell, O. Jensen, P. Livingston, K. Lorenzen, K. Mills, W. F. Patterson, P. J. Sullivan, and R. Wong.


Project PI: Mills
DOI: https://doi.org/10.1002/fsh.10179

Spatially Varying Phytoplankton Seasonality On The Northwest Atlantic Shelf: A Model-Based Assessment Of Patterns, Drivers, And Implications

Project: Climate-fisheries dynamics: Individual-based end-to-end sea scallop model with socio-economic feedbacks
Year: 2021

Author(s): Zang, Z., Ji, R., Feng, Z., Chen, C., Li, S., Davis, C.S.


Project PI: Ji/David/Rubao
DOI: https://doi.org/10.1093/icesjms/fsab102

The signal of phytoplankton responses to climate-related forcing can be obscured by the heterogeneity of shelf seascapes, making them difficult to detect from fragmented observations. In this study, a physical–biological model was applied to the Northwest Atlantic Shelf to capture the seasonality of phytoplankton. The difference in phytoplankton seasonality between the Mid-Atlantic Bight (MAB) and the Gulf of Maine (GoM) is a result of the interplay between nutrients and temperature: In the MAB, relatively high temperature in the cold season and longer oligotrophic environment in the warm season contribute to an earlier winter bloom and a later fall bloom; in the GoM, low temperature and strong mixing limit phytoplankton growth from late fall to early spring, resulting in a later spring bloom and an earlier fall bloom. Although the temperature difference between the GoM and the MAB might decrease in the future, stratification and surface nutrient regimes in these two regions will remain different owing to distinct thermohaline structures and deep-water intrusion. The spatial heterogeneity of phytoplankton dynamics affects pelagic and benthic production through connections with zooplankton and benthic–pelagic coupling.

Impact Of Larval Behaviors On Dispersal And Connectivity Of Sea Scallop Larvae Over The Northeast U.S. Shelf

Project: Climate-fisheries dynamics: Individual-based end-to-end sea scallop model with socio-economic feedbacks
Year: 2021

Author(s): Chen, C., Zhao, L., Gallager, S., Ji, R., He, P., Davis, C. S., Beardsley, R.C., Hart, D., Gentleman, W.C., Wang, L., Li, S., Lin, H., Stokesbury, K., Bethoney, D.


Project PI: Ji/David/Rubao
DOI: https://doi.org/10.1016/j.pocean.2021.102604

Sea scallops (Placopecten magellanicus) are a highly fecund species that supports one of the most commercially valuable fisheries in the northeast U.S. continental shelf region. Scallop landings exhibit significant interannual variability, with abundances widely varied due to a combination of anthropogenic and natural factors. By coupling a pelagic-stage Individual-Based scallop population dynamics Model (hereafter referred to as Scallop-IBM) with the Northeast Coastal Ocean Forecast System (NECOFS) and considering the persistent aggregations over Georges Bank (GB)/Great South Channel (GSC) as source beds, we have examined the dispersion and settlement of scallop larvae over 1978–2016. The results demonstrated that the significant interannual variability of larval dispersal was driven by biophysical interactions associated with scallop larval swimming behaviors in their early stages. The duration, frequency, and stimulus of larval vertical migration in the ocean mixed layer (OML) affected the residence time of larvae in the water column over GB. It thus sustained the persistent aggregations of scallops in the GB/GSC and Southern New England region. In addition to larval behavior in the OML, the larval transport to the Middle Atlantic Bight (MAB) was also closely related to the intensity and duration of northeasterly wind in autumn. There was no conspicuous connectivity of scallop larvae between GB/GSC and MAB in the past 39 years except in the autumn of 2009. In 2009, the significant larval transport to the MAB was produced by unusually strong northeasterly winds. Ignoring larval behavior in the OML could overestimate the scallop population’s connectivity between GB and the MAB and thus provide an unrealistic prediction of scallop larval recruitment in the region. Both satellite-derived SST and NECOFS show that the northeast U.S. shelf experienced climate change-induced warming. The extreme warming at the shelfbreak off GB tends to intensify the cross-isobath water temperature gradient and enhance the clockwise subtidal gyre over GB. This change can increase the larval retention rate over GB/GSC, facilitating enhanced productivity on GB.

Are Long- Term Changes In Mixed Layer Depth Influencing North Pacific Marine Heatwaves?

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Amaya DJ, et al


Project PI: Jacox
DOI: 10.1175/BAMS-D-20-0144.1



Page 2  of  7First   Previous   1  [2]  3  4  5  6  7  Next   Last  

MERT Facilitates Enhanced Partnership Between NOAA CoastWatch and Sanctuaries

  • 24 November 2020
MERT Facilitates Enhanced Partnership Between NOAA CoastWatch and Sanctuaries

On November 18, CPO Marine Ecosystems Risk Team (MERT) member, Zac Cannizzo–holding a joint position with CPO and the NOAA Office of National Marine Sanctuaries (ONMS) Marine Protected Areas Center–led an internal sanctuary learning exchange to introduce sanctuary research and management staff to the satellite data portfolio of NOAA CoastWatch. The interactive webinar featured CoastWatch staff and focused on how the CoastWatch data, tools, and capabilities can be used to inform sanctuaries science and management, including climate change assessment and adaptation. The webinar spurred a discussion between CoastWatch and sanctuary science staff around how the tool and products shared could be leveraged for sanctuary use through enhanced partnerships. This webinar grew out of the needs identified during the Sanctuaries Virtual Climate Priorities Focus Groups that MERT organized and held in September. The fostering and development of partnerships to provide products such as this learning exchange is an important component of CPO’s growing partnership with ONMS to address the climate information needs of sanctuaries. The goal of the MERT initiative is to reinforce and expand the application of climate science in National Marine Sanctuaries activities to support NOAA’s Stewardship mission.

Print

x

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.