CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

Exploring Timescales Of Predictability In Species Distributions

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Brodie, S, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/ecog.05504

Accurate forecasts of how animals respond to climate-driven environmental change are needed to prepare for future redistributions, however, it is unclear which temporal scales of environmental variability give rise to predictability of species distributions. We examined the temporal scales of environmental variability that best predicted spatial abundance of a marine predator, swordfish Xiphias gladius, in the California Current. To understand which temporal scales of environmental variability provide biological predictability, we decomposed physical variables into three components: a monthly climatology (long-term average), a low frequency component representing interannual variability, and a high frequency (sub-annual) component that captures ephemeral features. We then assessed each component's contribution to predictive skill for spatially-explicit swordfish catch. The monthly climatology was the primary source of predictability in swordfish spatial catch, reflecting the spatial distribution associated with seasonal movements in this region. Importantly, we found that the low frequency component (capturing interannual variability) provided significant skill in predicting anomalous swordfish distribution and catch, which the monthly climatology cannot. The addition of the high frequency component added only minor improvement in predictability. By examining models' ability to predict species distribution anomalies, we assess the models in a way that is consistent with the goal of distribution forecasts – to predict deviations of species distributions from their average historical locations. The critical importance of low frequency climate variability in describing anomalous swordfish distributions and catch matches the target timescales of physical climate forecasts, suggesting potential for skillful ecological forecasts of swordfish distributions across short (seasonal) and long (climate) timescales. Understanding sources of prediction skill for species environmental responses gives confidence in our ability to accurately predict species distributions and abundance, and to know which responses are likely less predictable, under future climate change. This is important as climate change continues to cause an unprecedented redistribution of life on Earth.

Role Of Geostrophic Currents In Future Changes Of Coastal Upwelling In The California Current System

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Ding, H., Alexander, MA, Jacox, MG


Project PI: Jacox
DOI: https://doi.org/10.1029/2020GL090768

Given the importance of coastal upwelling in the California Current System (CCS), there is a considerable interest in predicting its response to global warming. However, upwelling changes are often treated as synonymous with changes in upwelling-favorable winds, while the role of geostrophic transport is unaccounted for. Here, we examine the respective roles of Ekman and geostrophic transports using the Community Earth System Model Large Ensemble. In some parts of the CCS, the contribution of geostrophic transport to long-term changes in upwelling is equal or greater than the contribution from Ekman transport. The combination of the two transports nearly close the momentum budget, and thus reproduce the mean state, interannual variability, and long-term changes in upwelling. These results highlight the importance of accounting for ocean circulation when quantifying upwelling and its variability and change.

Projected Shifts In 21St Century Sardine Distribution And Catch In The California Current

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Fiechter, J, Pozo Buil, M, Jacox, M, Alexander, M, Rose, K,


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.685241

Predicting changes in the abundance and distribution of small pelagic fish species in response to anthropogenic climate forcing is of paramount importance due to the ecological and socioeconomic importance of these species, especially in eastern boundary current upwelling regions. Coastal upwelling systems are notorious for the wide range of spatial (from local to basin) and temporal (from days to decades) scales influencing their physical and biogeochemical environments and, thus, forage fish habitat. Bridging those scales can be achieved by using high-resolution regional models that integrate global climate forcing downscaled from coarser resolution earth system models. Here, “end-to-end” projections for 21st century sardine population dynamics and catch in the California Current system (CCS) are generated by coupling three dynamically downscaled earth system model solutions to an individual-based fish model and an agent-based fishing fleet model. Simulated sardine population biomass during 2000–2100 exhibits primarily low-frequency (decadal) variability, and a progressive poleward shift driven by thermal habitat preference. The magnitude of poleward displacement varies noticeably under lower and higher warming conditions (500 and 800 km, respectively). Following the redistribution of the sardine population, catch is projected to increase by 50–70% in the northern CCS and decrease by 30–70% in the southern and central CCS. However, the late-century increase in sardine abundance (and hence, catch) in the northern CCS exhibits a large ensemble spread and is not statistically identical across the three downscaled projections. Overall, the results illustrate the benefit of using dynamical downscaling from multiple earth system models as input to high-resolution regional end-to-end (“physics to fish”) models for projecting population responses of higher trophic organisms to global climate change.

Changes To The Structure And Function Of The Albacore Fishery Reveal Shifting Social-Ecological Realities For Pacific Northwest Fishermen

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Frawley, T, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/faf.12519

Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.

A Dynamically Downscaled Ensemble Of Future Projections For The California Current System

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Pozo Buil, M, Jacox, et al


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.612874

Given the ecological and economic importance of eastern boundary upwelling systems like the California Current System (CCS), their evolution under climate change is of considerable interest for resource management. However, the spatial resolution of global earth system models (ESMs) is typically too coarse to properly resolve coastal winds and upwelling dynamics that are key to structuring these ecosystems. Here we use a high-resolution (0.1°) regional ocean circulation model coupled with a biogeochemical model to dynamically downscale ESMs and produce climate projections for the CCS under the high emission scenario, Representative Concentration Pathway 8.5. To capture model uncertainty in the projections, we downscale three ESMs: GFDL-ESM2M, HadGEM2-ES, and IPSL-CM5A-MR, which span the CMIP5 range for future changes in both the mean and variance of physical and biogeochemical CCS properties. The forcing of the regional ocean model is constructed with a “time-varying delta” method, which removes the mean bias of the ESM forcing and resolves the full transient ocean response from 1980 to 2100. We found that all models agree in the direction of the future change in offshore waters: an intensification of upwelling favorable winds in the northern CCS, an overall surface warming, and an enrichment of nitrate and corresponding decrease in dissolved oxygen below the surface mixed layer. However, differences in projections of these properties arise in the coastal region, producing different responses of the future biogeochemical variables. Two of the models display an increase of surface chlorophyll in the northern CCS, consistent with a combination of higher nitrate content in source waters and an intensification of upwelling favorable winds. All three models display a decrease of chlorophyll in the southern CCS, which appears to be driven by decreased upwelling favorable winds and enhanced stratification, and, for the HadGEM2-ES forced run, decreased nitrate content in upwelling source waters in nearshore regions. While trends in the downscaled models reflect those in the ESMs that force them, the ESM and downscaled solutions differ more for biogeochemical than for physical variables.

The Potential Impact Of A Shifting Pacific Sardine Distribution On Us West Coast Landings

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Smith, JA, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/fog.12529

Many fish species are shifting spatial distributions in response to climate change, but projecting these shifts and measuring their impact at fine scales are challenging. We present a simulation that projects change in fishery landings due to spatial distribution shifts, by combining regional ocean and biogeochemical models (forced by three earth system models, ESMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-MR), correlative models for species distribution and port-level landings, and a simulation framework which provides realistic values for species abundance and fishery conditions using an historical “reference period”. We demonstrate this approach for the northern subpopulation of Pacific sardine, an iconic commercial species for the U.S. West Coast. We found a northward shift in sardine landings (based on the northern subpopulation's habitat suitability), with projected declines at southern ports (20%–50% decline by 2080) and an increase (up to 50%) or no change at northern ports, and this was consistent across the three ESMs. Total sardine landings were more uncertain, with HadGEM2 indicating a 20% decline from 2000 to 15 levels by 2070 (a rate of 170 mt/y), IPSL a 10% increase (115 mt/y), and GFDL an 15% increase by the year ~2050 followed by a sharp decrease. The ESMs also differed in their projected change to the timing of the fishing season and frequency of fishery closures. Our simulation also identified key constraints on future landings that can be targeted by more tactical assessment; these included the seasonality of quota allocation and the abundance of other species in the catch portfolio.

Comparing Dynamic And Static Time-Area Closures For Bycatch Mitigation: A Management Strategy Evaluation Of A Swordfish Fishery

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Smith JA, et al


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.630607

Time-area closures are a valuable tool for mitigating fisheries bycatch. There is increasing recognition that dynamic closures, which have boundaries that vary across space and time, can be more effective than static closures at protecting mobile species in dynamic environments. We created a management strategy evaluation to compare static and dynamic closures in a simulated fishery based on the California drift gillnet swordfish fishery, with closures aimed at reducing bycatch of leatherback turtles. We tested eight operating models that varied swordfish and leatherback distributions, and within each evaluated the performance of three static and five dynamic closure strategies. We repeated this under 20 and 50% simulated observer coverage to alter the data available for closure creation. We found that static closures can be effective for reducing bycatch of species with more geographically associated distributions, but to avoid redistributing bycatch the static areas closed should be based on potential (not just observed) bycatch. Only dynamic closures were effective at reducing bycatch for more dynamic leatherback distributions, and they generally reduced bycatch risk more than they reduced target catch. Dynamic closures were less likely to redistribute fishing into rarely fished areas, by leaving open pockets of lower risk habitat, but these closures were often fragmented which would create practical challenges for fishers and managers and require a mobile fleet. Given our simulation’s catch rates, 20% observer coverage was sufficient to create useful closures and increasing coverage to 50% added only minor improvement in closure performance. Even strict static or dynamic closures reduced leatherback bycatch by only 30–50% per season, because the simulated leatherback distributions were broad and open areas contained considerable bycatch risk. Perfect knowledge of the leatherback distribution provided an additional 5–15% bycatch reduction over a dynamic closure with realistic predictive accuracy. This moderate level of bycatch reduction highlights the limitations of redistributing fishing effort to reduce bycatch of broadly distributed and rarely encountered species, and indicates that, for these species, spatial management may work best when used with other bycatch mitigation approaches. We recommend future research explores methods for considering model uncertainty in the spatial and temporal resolution of dynamic closures.

A Case Study In Connecting Fisheries Management Challenges With Models And Analysis To Support Ecosystem-Based Management In The California Current Ecosystem

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Tommasi, Desiree, et al


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.624161

One of the significant challenges to using information and ideas generated through ecosystem models and analyses for ecosystem-based fisheries management is the disconnect between modeling and management needs. Here we present a case study from the U.S. West Coast, the stakeholder review of NOAA’s annual ecosystem status report for the California Current Ecosystem established by the Pacific Fisheries Management Council’s Fisheries Ecosystem Plan, showcasing a process to identify management priorities that require information from ecosystem models and analyses. We then assess potential ecosystem models and analyses that could help address the identified policy concerns. We screened stakeholder comments and found 17 comments highlighting the need for ecosystem-level synthesis. Policy needs for ecosystem science included: (1) assessment of how the environment affects productivity of target species to improve forecasts of biomass and reference points required for setting harvest limits, (2) assessment of shifts in the spatial distribution of target stocks and protected species to anticipate changes in availability and the potential for interactions between target and protected species, (3) identification of trophic interactions to better assess tradeoffs in the management of forage species between the diet needs of dependent predators, the resilience of fishing communities, and maintenance of the forage species themselves, and (4) synthesis of how the environment affects efficiency and profitability in fishing communities, either directly via extreme events (e.g., storms) or indirectly via climate-driven changes in target species availability. We conclude by exemplifying an existing management process established on the U.S. West Coast that could be used to enable the structured, iterative, and interactive communication between managers, stakeholders, and modelers that is key to refining existing ecosystem models and analyses for management use.

Thermal Displacement By Marine Heatwaves

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2020

Author(s): Jacox, M.G., Alexander, M.A., Bograd, S.J. et al


Project PI: Jacox
DOI: https://doi.org/10.1038/s41586-020-2534-z

Marine heatwaves (MHWs)—discrete but prolonged periods of anomalously warm ocean temperatures—can drastically alter ocean ecosystems, with profound ecological and socioeconomic impacts1,2,3,4,5,6,7,8. Considerable effort has been directed at understanding the patterns, drivers and trends of MHWs globally9,10,11. Typically, MHWs are characterized on the basis of their intensity and persistence at a given location—an approach that is particularly relevant for corals and other sessile organisms that must endure increased temperatures. However, many ecologically and commercially important marine species respond to environmental disruptions by relocating to favourable habitats, and dramatic range shifts of mobile marine species are among the conspicuous impacts of MHWs1,4,12,13. Whereas spatial temperature shifts have been studied extensively in the context of long-term warming trends14,15,16,17,18, they are unaccounted for in existing global MHW analyses. Here we introduce thermal displacement as a metric that characterizes MHWs by the spatial shifts of surface temperature contours, instead of by local temperature anomalies, and use an observation-based global sea surface temperature dataset to calculate thermal displacements for all MHWs from 1982 to 2019. We show that thermal displacements during MHWs vary from tens to thousands of kilometres across the world’s oceans and do not correlate spatially with MHW intensity. Furthermore, short-term thermal displacements during MHWs are of comparable magnitude to century-scale shifts inferred from warming trends18, although their global spatial patterns are very different. These results expand our understanding of MHWs and their potential impacts on marine species, revealing which regions are most susceptible to thermal displacement, and how such shifts may change under projected ocean warming. The findings also highlight the need for marine resource management to account for MHW-driven spatial shifts, which are of comparable scale to those associated with long-term climate change and are already happening.

Changes To The Structure And Function Of An Albacore Fishery Reveal Shifting Social–Ecological Realities For Pacific Northwest Fishermen

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2020

Author(s): Frawley T. H. et al


Project PI: Jacox
DOI: https://doi.org/10.1111/faf.12519

Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.



Page 3  of  7First   Previous   1  2  [3]  4  5  6  7  Next   Last  

MERT Facilitates Enhanced Partnership Between NOAA CoastWatch and Sanctuaries

  • 24 November 2020
MERT Facilitates Enhanced Partnership Between NOAA CoastWatch and Sanctuaries

On November 18, CPO Marine Ecosystems Risk Team (MERT) member, Zac Cannizzo–holding a joint position with CPO and the NOAA Office of National Marine Sanctuaries (ONMS) Marine Protected Areas Center–led an internal sanctuary learning exchange to introduce sanctuary research and management staff to the satellite data portfolio of NOAA CoastWatch. The interactive webinar featured CoastWatch staff and focused on how the CoastWatch data, tools, and capabilities can be used to inform sanctuaries science and management, including climate change assessment and adaptation. The webinar spurred a discussion between CoastWatch and sanctuary science staff around how the tool and products shared could be leveraged for sanctuary use through enhanced partnerships. This webinar grew out of the needs identified during the Sanctuaries Virtual Climate Priorities Focus Groups that MERT organized and held in September. The fostering and development of partnerships to provide products such as this learning exchange is an important component of CPO’s growing partnership with ONMS to address the climate information needs of sanctuaries. The goal of the MERT initiative is to reinforce and expand the application of climate science in National Marine Sanctuaries activities to support NOAA’s Stewardship mission.

Print

x

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.