CAFA Publications

Publications from CAFA funded projects. Sort by year, title, or project to view publications.

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year | Title | Project

Climate Change May Cause Shifts In Growth And Instantaneous Natural Mortality Of American Shad Throughout Their Native Range

Project: Climate velocity over the 21st century and its implications for fisheries management in the Northeast U.S.
Year: 2021

Author(s): Gilligan Lunda, E. K., Stich, D. S., Mills, K. E., Bailey, M. M., & Zydlewski, J. D.


Project PI: Mills
DOI: https://doi.org/10.1002/tafs.10299

American Shad (Alosa sapidissima) is an anadromous species with populations ranging along the U.S. Atlantic coast. Past American Shad stock assessments have been data limited and estimating system-specific growth parameters or instantaneous natural mortality (M) was not possible. This precluded system-specific stock assessment and management due to reliance on these parameters for estimating other population dynamics (such as yield per recruit). Furthermore, climate-informed biological reference points remain a largely unaddressed need in American Shad stock assessment. Population abundance estimates of American Shad and other species often rely heavily on M derived from von Bertalanffy growth function (VBGF) parameters. Therefore, we developed Bayesian hierarchical models to estimate coastwide, regional, and system-specific VBGF parameters and M using data collected from 1982 to 2017. We tested predictive performance of models that included effects of various climate variables on VBGF parameters within these models. System-specific models were better supported than regional or coast-wide models. Mean asymptotic length (L∞) decreased with increasing mean annual sea surface temperature (SST) and degree days (DD) experienced by fish during their lifetime. Although uncertain, K (Brody growth coefficient) decreased over the same range of lifetime SST and DD. Assuming no adaptation, we projected changes in VBGF parameters and M through 2099 using modeled SST from two climate projection scenarios (Representative Concentration Pathways 4.5 and 8.5). We predicted reduced growth under both scenarios, and M was projected to increase by about 0.10. It is unclear how reduced growth and increased mortality may influence population productivity or life history adaptation in the future, but our results may inform stock assessment models to assess those trade-offs.American Shad Alosa sapidissima is an anadromous species with populations ranging along the U.S. Atlantic coast. Past American Shad stock assessments have been data limited and estimating system-specific growth parameters or instantaneous natural mortality (M) was not possible. This precluded system-specific stock assessment and management due to reliance on these parameters for estimating other population dynamics (such as yield per recruit). Furthermore, climate-informed biological reference points remain a largely unaddressed need in American Shad stock assessment. Population abundance estimates of American Shad and other species often rely heavily on M derived from von Bertalanffy growth function (VBGF) parameters. Therefore, we developed Bayesian hierarchical models to estimate coastwide, regional, and system-specific VBGF parameters and M using data collected from 1982 to 2017. We tested predictive performance of models that included effects of various climate variables on VBGF parameters within these models. System-specific models were better supported than regional or coast-wide models. Mean asymptotic length (L∞) decreased with increasing mean annual sea surface temperature (SST) and degree days (DD) experienced by fish during their lifetime. Although uncertain, K (Brody growth coefficient) decreased over the same range of lifetime SST and DD. Assuming no adaptation, we projected changes in VBGF parameters and M through 2099 using modeled SST from two climate projection scenarios (Representative Concentration Pathways 4.5 and 8.5). We predicted reduced growth under both scenarios, and M was projected to increase by about 0.10. It is unclear how reduced growth and increased mortality may influence population productivity or life history adaptation in the future, but our results may inform stock assessment models to assess those trade-offs.

Spatially Varying Phytoplankton Seasonality On The Northwest Atlantic Shelf: A Model-Based Assessment Of Patterns, Drivers, And Implications

Project: Climate-fisheries dynamics: Individual-based end-to-end sea scallop model with socio-economic feedbacks
Year: 2021

Author(s): Zang, Z., Ji, R., Feng, Z., Chen, C., Li, S., Davis, C.S.


Project PI: Ji/David/Rubao
DOI: https://doi.org/10.1093/icesjms/fsab102

The signal of phytoplankton responses to climate-related forcing can be obscured by the heterogeneity of shelf seascapes, making them difficult to detect from fragmented observations. In this study, a physical–biological model was applied to the Northwest Atlantic Shelf to capture the seasonality of phytoplankton. The difference in phytoplankton seasonality between the Mid-Atlantic Bight (MAB) and the Gulf of Maine (GoM) is a result of the interplay between nutrients and temperature: In the MAB, relatively high temperature in the cold season and longer oligotrophic environment in the warm season contribute to an earlier winter bloom and a later fall bloom; in the GoM, low temperature and strong mixing limit phytoplankton growth from late fall to early spring, resulting in a later spring bloom and an earlier fall bloom. Although the temperature difference between the GoM and the MAB might decrease in the future, stratification and surface nutrient regimes in these two regions will remain different owing to distinct thermohaline structures and deep-water intrusion. The spatial heterogeneity of phytoplankton dynamics affects pelagic and benthic production through connections with zooplankton and benthic–pelagic coupling.

The Potential Impact Of A Shifting Pacific Sardine Distribution On US West Coast Landings

Project: From physics to fisheries: A social-ecological management strategy evaluationfor the California Current Large Marine Ecosystem
Year: 2021

Author(s): Smith, J. A., Muhling, B., Sweeney, J., Tommasi, D., Pozo Buil, M., Fiechter, J., & Jacox, M. G.


Project PI: Jacox
DOI: https://doi.org/10.1111/fog.12529

Many fish species are shifting spatial distributions in response to climate change, but projecting these shifts and measuring their impact at fine scales are challenging. We present a simulation that projects change in fishery landings due to spatial distribution shifts, by combining regional ocean and biogeochemical models (forced by three earth system models, ESMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-MR), correlative models for species distribution and port-level landings, and a simulation framework which provides realistic values for species abundance and fishery conditions using an historical “reference period”. We demonstrate this approach for the northern subpopulation of Pacific sardine, an iconic commercial species for the U.S. West Coast. We found a northward shift in sardine landings (based on the northern subpopulation's habitat suitability), with projected declines at southern ports (20%–50% decline by 2080) and an increase (up to 50%) or no change at northern ports, and this was consistent across the three ESMs. Total sardine landings were more uncertain, with HadGEM2 indicating a 20% decline from 2000 to 15 levels by 2070 (a rate of 170 mt/y), IPSL a 10% increase (115 mt/y), and GFDL an 15% increase by the year ~2050 followed by a sharp decrease. The ESMs also differed in their projected change to the timing of the fishing season and frequency of fishery closures. Our simulation also identified key constraints on future landings that can be targeted by more tactical assessment; these included the seasonality of quota allocation and the abundance of other species in the catch portfolio.

Are Long- Term Changes In Mixed Layer Depth Influencing North Pacific Marine Heatwaves?

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Amaya DJ, et al


Project PI: Jacox
DOI: 10.1175/BAMS-D-20-0144.1

Exploring Timescales Of Predictability In Species Distributions

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Brodie, S, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/ecog.05504

Accurate forecasts of how animals respond to climate-driven environmental change are needed to prepare for future redistributions, however, it is unclear which temporal scales of environmental variability give rise to predictability of species distributions. We examined the temporal scales of environmental variability that best predicted spatial abundance of a marine predator, swordfish Xiphias gladius, in the California Current. To understand which temporal scales of environmental variability provide biological predictability, we decomposed physical variables into three components: a monthly climatology (long-term average), a low frequency component representing interannual variability, and a high frequency (sub-annual) component that captures ephemeral features. We then assessed each component's contribution to predictive skill for spatially-explicit swordfish catch. The monthly climatology was the primary source of predictability in swordfish spatial catch, reflecting the spatial distribution associated with seasonal movements in this region. Importantly, we found that the low frequency component (capturing interannual variability) provided significant skill in predicting anomalous swordfish distribution and catch, which the monthly climatology cannot. The addition of the high frequency component added only minor improvement in predictability. By examining models' ability to predict species distribution anomalies, we assess the models in a way that is consistent with the goal of distribution forecasts – to predict deviations of species distributions from their average historical locations. The critical importance of low frequency climate variability in describing anomalous swordfish distributions and catch matches the target timescales of physical climate forecasts, suggesting potential for skillful ecological forecasts of swordfish distributions across short (seasonal) and long (climate) timescales. Understanding sources of prediction skill for species environmental responses gives confidence in our ability to accurately predict species distributions and abundance, and to know which responses are likely less predictable, under future climate change. This is important as climate change continues to cause an unprecedented redistribution of life on Earth.

Role Of Geostrophic Currents In Future Changes Of Coastal Upwelling In The California Current System

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Ding, H., Alexander, MA, Jacox, MG


Project PI: Jacox
DOI: https://doi.org/10.1029/2020GL090768

Given the importance of coastal upwelling in the California Current System (CCS), there is a considerable interest in predicting its response to global warming. However, upwelling changes are often treated as synonymous with changes in upwelling-favorable winds, while the role of geostrophic transport is unaccounted for. Here, we examine the respective roles of Ekman and geostrophic transports using the Community Earth System Model Large Ensemble. In some parts of the CCS, the contribution of geostrophic transport to long-term changes in upwelling is equal or greater than the contribution from Ekman transport. The combination of the two transports nearly close the momentum budget, and thus reproduce the mean state, interannual variability, and long-term changes in upwelling. These results highlight the importance of accounting for ocean circulation when quantifying upwelling and its variability and change.

Projected Shifts In 21St Century Sardine Distribution And Catch In The California Current

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Fiechter, J, Pozo Buil, M, Jacox, M, Alexander, M, Rose, K,


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.685241

Predicting changes in the abundance and distribution of small pelagic fish species in response to anthropogenic climate forcing is of paramount importance due to the ecological and socioeconomic importance of these species, especially in eastern boundary current upwelling regions. Coastal upwelling systems are notorious for the wide range of spatial (from local to basin) and temporal (from days to decades) scales influencing their physical and biogeochemical environments and, thus, forage fish habitat. Bridging those scales can be achieved by using high-resolution regional models that integrate global climate forcing downscaled from coarser resolution earth system models. Here, “end-to-end” projections for 21st century sardine population dynamics and catch in the California Current system (CCS) are generated by coupling three dynamically downscaled earth system model solutions to an individual-based fish model and an agent-based fishing fleet model. Simulated sardine population biomass during 2000–2100 exhibits primarily low-frequency (decadal) variability, and a progressive poleward shift driven by thermal habitat preference. The magnitude of poleward displacement varies noticeably under lower and higher warming conditions (500 and 800 km, respectively). Following the redistribution of the sardine population, catch is projected to increase by 50–70% in the northern CCS and decrease by 30–70% in the southern and central CCS. However, the late-century increase in sardine abundance (and hence, catch) in the northern CCS exhibits a large ensemble spread and is not statistically identical across the three downscaled projections. Overall, the results illustrate the benefit of using dynamical downscaling from multiple earth system models as input to high-resolution regional end-to-end (“physics to fish”) models for projecting population responses of higher trophic organisms to global climate change.

Changes To The Structure And Function Of The Albacore Fishery Reveal Shifting Social-Ecological Realities For Pacific Northwest Fishermen

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Frawley, T, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/faf.12519

Marine fisheries around the globe are increasingly exposed to external drivers of social and ecological change. Though diversification and flexibility have historically helped marine resource users negotiate risk and adversity, much of modern fisheries management treats fishermen as specialists using specific gear types to target specific species. Here, we describe the evolution of harvest portfolios amongst Pacific Northwest fishermen over 35+ years with explicit attention to changes in the structure and function of the albacore (Thunnus alalunga, Scombridae) troll and pole-and-line fishery. Our analysis indicates that recent social–ecological changes have had heterogenous impacts upon the livelihood strategies favoured by different segments of regional fishing fleets. As ecological change and regulatory reform have restricted access to a number of fisheries, many of the regional small (<45 ft) and medium (45–60 ft) boat fishermen who continue to pursue diverse livelihood strategies have increasingly relied upon the ability to opportunistically target albacore in coastal waters while retaining more of the value generated by such catch. In contrast, large vessels (>60 ft) targeting albacore are more specialized now than previously observed, even as participation in multiple fisheries has become increasingly common for this size class. In describing divergent trajectories associated with the albacore fishery, one of the US West Coast's last open-access fisheries, we highlight the diverse strategies and mechanisms utilized to sustain fisheries livelihoods in the modern era while arguing that alternative approaches to management and licensing may be required to maintain the viability of small-scale fishing operations worldwide moving forward.

A Dynamically Downscaled Ensemble Of Future Projections For The California Current System

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Pozo Buil, M, Jacox, et al


Project PI: Jacox
DOI: https://doi.org/10.3389/fmars.2021.612874

Given the ecological and economic importance of eastern boundary upwelling systems like the California Current System (CCS), their evolution under climate change is of considerable interest for resource management. However, the spatial resolution of global earth system models (ESMs) is typically too coarse to properly resolve coastal winds and upwelling dynamics that are key to structuring these ecosystems. Here we use a high-resolution (0.1°) regional ocean circulation model coupled with a biogeochemical model to dynamically downscale ESMs and produce climate projections for the CCS under the high emission scenario, Representative Concentration Pathway 8.5. To capture model uncertainty in the projections, we downscale three ESMs: GFDL-ESM2M, HadGEM2-ES, and IPSL-CM5A-MR, which span the CMIP5 range for future changes in both the mean and variance of physical and biogeochemical CCS properties. The forcing of the regional ocean model is constructed with a “time-varying delta” method, which removes the mean bias of the ESM forcing and resolves the full transient ocean response from 1980 to 2100. We found that all models agree in the direction of the future change in offshore waters: an intensification of upwelling favorable winds in the northern CCS, an overall surface warming, and an enrichment of nitrate and corresponding decrease in dissolved oxygen below the surface mixed layer. However, differences in projections of these properties arise in the coastal region, producing different responses of the future biogeochemical variables. Two of the models display an increase of surface chlorophyll in the northern CCS, consistent with a combination of higher nitrate content in source waters and an intensification of upwelling favorable winds. All three models display a decrease of chlorophyll in the southern CCS, which appears to be driven by decreased upwelling favorable winds and enhanced stratification, and, for the HadGEM2-ES forced run, decreased nitrate content in upwelling source waters in nearshore regions. While trends in the downscaled models reflect those in the ESMs that force them, the ESM and downscaled solutions differ more for biogeochemical than for physical variables.

The Potential Impact Of A Shifting Pacific Sardine Distribution On Us West Coast Landings

Project: From physics to fisheries: A social-ecological management strategy evaluation for the California Current Large Marine Ecosystem
Year: 2021

Author(s): Smith, JA, et al


Project PI: Jacox
DOI: https://doi.org/10.1111/fog.12529

Many fish species are shifting spatial distributions in response to climate change, but projecting these shifts and measuring their impact at fine scales are challenging. We present a simulation that projects change in fishery landings due to spatial distribution shifts, by combining regional ocean and biogeochemical models (forced by three earth system models, ESMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-MR), correlative models for species distribution and port-level landings, and a simulation framework which provides realistic values for species abundance and fishery conditions using an historical “reference period”. We demonstrate this approach for the northern subpopulation of Pacific sardine, an iconic commercial species for the U.S. West Coast. We found a northward shift in sardine landings (based on the northern subpopulation's habitat suitability), with projected declines at southern ports (20%–50% decline by 2080) and an increase (up to 50%) or no change at northern ports, and this was consistent across the three ESMs. Total sardine landings were more uncertain, with HadGEM2 indicating a 20% decline from 2000 to 15 levels by 2070 (a rate of 170 mt/y), IPSL a 10% increase (115 mt/y), and GFDL an 15% increase by the year ~2050 followed by a sharp decrease. The ESMs also differed in their projected change to the timing of the fishing season and frequency of fishery closures. Our simulation also identified key constraints on future landings that can be targeted by more tactical assessment; these included the seasonality of quota allocation and the abundance of other species in the catch portfolio.



Page 1  of  7First   Previous   [1]  2  3  4  5  6  7  Next   Last  

Contact Us

Jennifer Dopkowski
NOAA Research

Climate Program Office
P: (301) 734-1261
E: jennifer.dopkowski@noaa.gov

Roger Griffis
NOAA Fisheries
Office of Science and Technology

P: (301) 427-8134
E: roger.b.griffis@noaa.gov

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather.