AC4: Funded Projects

   Search     
Enter Search Value:
- without any prefix or suffix to find all records where a column contains the value you enter, e.g. Net
- with | prefix to find all records where a column starts with the value you enter, e.g. |Network
- with | suffix to find all records where a column ends with the value you enter, e.g. Network|
- with | prefix and suffix to find all records containing the value you enter exactly, e.g. |Network|

Sort by: Year Initially Funded | PI | Title | Topic

 

PI: Ronald C. Cohen (University of California, Berkeley)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Recent decades saw increasing wildfire activities in the western US. The annual burned area has increased by more than a factor of three over California from 1985 to 2021. While the impacts of wildfires on particulate matter air quality are well known, the extent to which biomass burning emissions affect gas air pollutants, such as O3 and its precursors, is less clear. This project will explore how wildfire emissions, when mixed with anthropogenic emissions, affect the O3-NOx-volatile organic compounds (VOC) chemistry over downwind urban areas in California. The proposed study will use emerging new-generation satellite observations (TROPOspheric Monitoring Instrument (TROPOMI), Cross-track Infrared Sounder (CrIS), Moderate Resolution Imaging Spectroradiometer (MODIS)), in situ measurements from recent field campaigns (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption And Nitrogen (WE-CAN) and Fire Influence on Regional to Global Environments and Air Quality(FIREX-AQ)) and ground-based monitoring networks, a hierarchy of models from simple box model to meteorology-chemistry model, to track the evolution O3 precursors (NOx and VOCs) from fires, investigate the radiative and chemical effects of fire smoke on O3 chemistry, and analyze their variations with fire (i.e., fuel type, fire intensity, injection height, combustion efficiency).

Google Scholar Link

PI: Joost de Gouw (Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

This project proposes to use comprehensive trace gas and aerosol measurements made from satellite remote sensing instruments to study the composition of wildfire emissions, how these evolve over the course of individual wildfires, and depend on fire radiative power. The project also aims to study how sensitive the wildfire plume composition sensed from space is to retrieval biases and how these biases affect the analysis of the evolution of wildfire emissions. By combining our analysis of wildfire plume composition sensed from space with insights from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and Fire Influence on Regional and Global Environments Experiment (FIREX) Firelab 2016 studies, the team of researchers will develop a simple parameterization that calculates the gas-phase and aerosol composition of wildfire emissions based on parameters that can be sensed from space.

Google Scholar Link

PI: Allen Goldstein (University of California, Berkeley)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

The 7 largest wildfires in California took place from 2015 to 2020, with 2021 already being another extreme wildfire year. Many of these large wildfires happened at the wildland-urban interface (WUI), where human made structures mix with natural vegetation. Thus, it is critical to understand emissions from WUI wildfires, including emissions from burning structures, and the transformation of the emitted materials in the atmosphere. This project will investigate the gas and particle phase organic composition of smoke from WUI fires, including structures, and smoke arriving in the San Francisco Bay area that has been subject to various levels of aging. By collecting continuous gas and particle measurements using in-situ laboratory-based instrumentation, coupled with rapid deployment of a mobile sample collection platform, the team proposes to study the dynamically changing composition of wildfire smoke in a highly populated urban region during two fire seasons. The team also proposes to measure structure fires emissions and determine emission factors through collaboration with an ongoing study of structure combustion at the National Institute of Standards and Technology funded by CalFire.

Google Scholar Link

PI: Daniel Jaffe (University of Washington Bothell)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Wildfire smoke regularly impacts millions of people around the U.S. As part of the NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and NSF Western Wildfire Experiment For Cloud Chemistry, Aerosol Absorption And Nitrogen (WE-CAN) measurement campaigns, the community has collected an unprecedented amount of data and knowledge on fire emissions and in-situ smoke plume chemistry. However, much less is known about how these plumes mix and interact with anthropogenic emissions in urban areas and in the wildland-urban interface (WUI). This project will examine several key questions regarding O3 formation, oxidant production, aerosol sources and smoke identification. Specific objectives include: (1) Use a detailed chemical box model to examine multiple smoke scenarios in urban and rural areas to better understand O3 and oxidant production; (2) Examine observations in urban and rural locations to evaluate the consistency of PM2.5/CO/NOx/O3 enhancement ratios measured from individual plumes by aircraft observations; (3) Use long-term data from satellite indicators combined with surface observations of PM2.5 and smoke tracers to improve identification of smoke at the surface, especially for low smoke concentrations, and therefore improve our understanding of smoke impacts.

Google Scholar Link

PI: Shantanu Jathar (Colorado State University)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

The wildland urban interface (WUI) is growing rapidly in most parts of the United States. With 45 million houses in the U.S. located in WUI regions and wildfire frequency and activity on the rise, there is a growing concern that wildfire-related structural fires might be an important source of air pollutants to the atmosphere. However, emissions from structural fires are very poorly understood and what we do understand remains fragmented and incomplete. The goals of this research are to study the detailed gas- and particle- phase emissions from the combustion of common structural materials and their fuel complexes at different scales and develop an emission factor dataset and emissions inventory for structural fires specific to the wildland urban interface. The following objectives will be addressed in the proposed work: (1) Characterize gas and particle emissions from small-scale fires of structural materials and their complexes; (2) Study emissions from large-scale fires of realistic fuel complexes and structures (to be carried out at the National Fire Research Laboratory at NIST); (3) Develop an emission factor dataset and emissions inventory for structural fires specific to the wildland urban interface

Google Scholar Link

PI: Sonia Kreidenweis (Colorado State University)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Observations from geostationary satellites offer unprecedented opportunity to track and better understand smoke plumes in the atmosphere. Smoke plumes evolve physically and chemically as they are transported downwind, manifested as changes in their optical properties. If such changes can be properly characterized from spaceborne observations, this information would provide powerful constraints for regional and global models that represent biomass burning emissions and their chemical and physical changes during atmospheric transport, necessary information for evaluation of their impacts on climate and on human and environmental health. This project aims to improve aerosol retrievals from geostationary satellite observations, with six specific objectives: (1) Build and test a comprehensive suite of smoke-specific aerosol models constrained by dual-view Geostationary Operational Environmental Satellite (GOES) -16 and -17 observations, AErosol RObotic NETwork (AERONET), and lab and field campaign measurements, for biomass burning emissions near source and transported; (2) Develop a new, machine learning based aerosol retrieval method for GOES observations; (3) Characterize short-term temporal variability in near-field emissions, using new GOES retrievals; (4) Implement advanced methods for tracking smoke plume height, motion, and dispersion; (5) Examine the impacts of transport and aging on smoke properties; and (6) Assess the feasibility of transitioning advancements to operational GOES Advanced Baseline Imager (ABI) retrievals of smoke aerosols.

Google Scholar Link

PI: Alexander Laskin (Purdue University)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Atmospheric aerosol particles represent the most uncertain aspect of air quality control issues and the broader climate system. Models routinely underpredict formation, mass loadings, and temporal trends of anthropogenic organic aerosol (OA). As a result of climate change, more frequent forest wildfires have become a major source of primary organic aerosol (POA), secondary organic aerosol (SOA) and associated volatile organic compounds (VOCs). Although many studies investigated sources, formation, and atmospheric aging mechanisms of OA attributed to a range of biomass fuels, the increased frequency of the most devastating wildfire events occurring at the wildland-urban interface imply that the amount, composition and properties of OA are controlled not only by burning biomass, but also by burning a range of engineered man-made materials. This project aims to perform molecular characterization of the chemical composition of OA samples collected during planned experiments at the National Institute of Standards and Technology National Fire Research Laboratory (NIST-NFRL) test facility simulating smoke emissions in the wildland-urban interface fire events and will conduct fire measurements on real-scale objects, such as entire furnished rooms. The team will perform the first molecular characterization experiments on various types of particulate matter emitted during NFRL test burns. This work will provide important input for closure studies focused on the source apportionment of POA; understanding of recursors and formation mechanism of SOA, chemical transformations, and aging of OA; understanding of composition of light-absorbing components in OA (i.e. brown carbon).

Google Scholar Link

PI: Andrew May (Ohio State University)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Black Carbon (BC) aerosols play an important role in the climate system directly by absorbing light, and semi-directly by heating of the atmosphere. They also have an indirect effect on cloud properties, while deposition of BC onto snow has the potential to reduce surface albedo and increase melting. Global chemistry-climate models are often used to estimate the climate effects of BC, but the impacts do not always agree among these models. This project will provide an accurate, generalizable statistical model for the conversion of aerosol light absorption measurements to BC mass loadings for both filter-based absorption photometers and remote sensing techniques that will enable improved evaluations of predicted BC concentrations in chemistry-climate models. The team will achieve this goal through two objectives: (1) Improve upon our existing models and explore alternative models to reduce prediction biases across a range of atmospheric environments; (2) Apply the best statistical model to remote sensing data to evaluate its applicability for use in chemistry-climate model evaluation.

Google Scholar Link

PI: Dylan Millet (University of Minnesota)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Fire emissions of volatile organic compounds (VOCs) drive production of particulate matter and ozone, with major human health impacts. Field campaigns can provide valuable snapshots to understand emission mechanisms and in-plume chemistry, but sustained global VOC observations are needed to quantify these processes at scale and to diagnose temporal changes. However, existing VOC observations are sparse and often ill-suited for testing and advancing models. The proposed work will change this landscape by applying a suite of new space-based VOC retrievals from the Cross-track Infrared Sounder (CrIS) to better understand fire emissions and their atmospheric impacts. VOCs targeted in this project include key biomass burning emissions as well as tracers of the ensuing oxidative processing.

Google Scholar Link

PI: Rachel E. O'Brien (University of Michigan)

Co-PI:

Co-I:

Program: Atmospheric Chemistry, Carbon Cycle and Climate (AC4)

Topics:

Biomass burning is an increasingly important source for organic compounds in the atmosphere, especially with current trends towards a warmer, drier climate in the Northwest. When transported to urban areas, these chemicals can contribute to air quality exceedances, with negative impacts on human health. Progress is being made to better understand how wildfire emissions vary for different burns as well as how the smoke plume evolves, or ages, after it is emitted. However, despite a range of laboratory and ambient studies, there is a lack of understanding of the rate at which the brown color of smoke particles will bleach in the atmosphere. In addition, there is little information on the volatile organic compounds produced during aging and the physical properties of very aged smoke particles. This project proposes a laboratory study to probe the aging of biomass burning organic aerosol particles under different environmental conditions. The team will measure changes in both the condensed phase and the gas-phase during longer term photolysis and heterogeneous oxidation experiments. This study also makes use of previously collected filter samples from both Fire Influence on Regional and Global Environments Experiment (FIREX) 2016 and 2019, expanding the context for the FIREX campaigns. The combined results will provide a more complete view of the impact of aged BBOA particles transported to urban areas.

Google Scholar Link



Page 1  of  18  First   Previous   [1]  2  3  4  5  6  7  8  9  10  Next   Last  

ABOUT US

Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather. 

CPO HEADQUARTERS

1315 East-West Highway Suite 100
Silver Spring, MD 20910