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Fire activity is driven by environmental
parameters and human behavior

~__— Impactson fireactivity  ——__
/
- Agricultural waste burning - Precipitation - RH
- Land use change - Temperature - Wind
(Anthro-' = Ignition/suppression (Climate - Veg. species composition
w related) - Lightning ignition
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Fires are a source of air pollution

Impacts on fire activity

- Agricultural waste burning - Precipitation - RH

- Land use change - Temperature - Wind
(Anthro-' = Ignition/suppression (Climate - Veg. species composition
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Fires have a range of climate impacts

Impacts on fire activity

- Precipitation - RH

- Temperature - Wind

- Veg. species composition
- Lightning ignition

- Agricultural waste burning
- Land use change
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Can fires affect weather
Clear-sky AOD on August 15 18:00 UTC

Clear-sky aerosol optical depth

Clear-sky aerosol optical depth (-)
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Did all this smoke cool the surface?

Courtesy of Robert Field



Can fires affect weather
Modeled surface temperature difference (fire - no fire)

> 5 °C cooling under plume
SURFACE AIR TEMPERATURE
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Simulating fires interactively is a tool to
study biosphere forcing and feedbacks
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In past, present and future...



NASA-GISS PyrE
Initial fire conditions set by flammability

“VPD appears to be a simple and holistic indicator of
regional water balance” — Williams et al., 2015
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Explicitly calculating ignition and suppression
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Explicitly calculating ignition and suppression
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Explicitly calculating ignition and suppression
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Fire suppressions ranges (exponentially):
5% in unpopulated areas

95% in densely populated areas

(more than 100 people/km?)

Population density
increases with time
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Fire counts are a function of
flammability, ignition, and suppression
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Adding a physical parameterization
for fire spread and burned area (BA)
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Adding a physical parameterization
for fire spread and burned area (BA)
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|  burned area

wind speed temperature relative humidity precipitation vegeta;tli_oglgiensity
| | : | | |
vegetation type v : :
flammability ignition sources CG lightning
£ 7 > frequency
fire spread area _ fire suppression population
fire counts density

BAt — FC;FSA‘I‘BAA*t_l _R*A

Mezuman et al., in preparation (A)
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Offline burned area (BA):
MODIS FC

Surface RH, wind speed from a 2001 nudged simulation
ENT DVGM'’s recovery time

model BA 2001 /01 GFED4s BA 2001 /01
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Mezuman et al,, in preparation (A)



Fires affect atmospheric composition
through interactive emissions

trace gas and
aerosol emissions
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Mezuman et al., in preparation (A)




Emission Per Fire Count (EPFC)

For each grid box (i, j) a set of n linear equations is constructed:

n
Einventory(irj) = MODISFC(i,j) . Z : fracveg type (1']))

veg type=1

n - number of vegetation types (i.e. grassland, rainforest etc.)
Einventory - fire emissions in the grid box (AR5, GFED2,3, etc.)
MODISg. - MODIS fire count in the grid box

fracyegeype - fraction of each vegetation type in the grid box
EPFC ¢4 type - EPFC factor for each vegetation type (the unknown)

Solution of linear equations using least-squares minimization method

Mezuman et al,, in preparation (A)



EPFC is a function of
flammable surface type and species
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Emission Per Fire Count (EPFC)

For each grid box (i, j) a set of n linear equations is constructed:

n
Einventory(irj) = MODISFC(LD ) Z ) fTCleeg type (1:]))

veg type=1

n - number of vegetation types (i.e. grassland, rainforest gtc.)
Einventory - fire emissions in the grid box (AR5, GFED2,3, fetc.)
MODISg. - MODIS fire count in the grid box
fracyegeype - fraction of each vegetation type in the gyid box

EPFC ¢4 type - EPFC factor for each vegetation type [the unknown)

Solution of linear equations using least-squares minfmization method

n

Emodel(i:j) = MODELFC(LD ’ Z (EPFCv
veg type=1

eg type fT'aneg type(i: ]))

Mezuman et al,, in preparation (A)



Fires affect atmospheric composition
through interactive emissions

trace gas and

aerosol emissions

wind speed temperature relative humidity precipitation vegeta;tli_oglgiensity
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Set by the model’s physics and chemistry:
transport, deposition, chemical interactions

Mezuman et al., in preparation (A)




Applications
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Study fire pollution and health impacts




Regardless of time period fire pollution (surface

PMZ.S) iS high *excluding dust and sea salt
All - no fire = ﬁre poIIutlon

[0.62 ug m™] 40% of total
Mezumanetal., 6% 5= 5.0 75 100 -25-1.2'5 ~0.0 . 1
in preparation (B) [ng m3] [ug m 3]




Annually, fire pollution (surface PM2.5) is dominating

in the tropical continental regions *excluding dust and sea salt
All - no fire = ﬁre poIIutlon

[0.62 ug m™] 40% of total
Mezumanetal., 6% 5= 5.0 75 100 -25-1.2'5 ~0.0 . 1
in preparation (B) [ng m3] [ug m 3]




Applications
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Study fire pollution and health impacts

Evaluate climate impact and radiative forcing




Overall fire aerosols have a cooling
effect on the climate system

fire aerosol SWF = (all — no fire) aerosol SWF

10-year climatological mean
2005 10-year climatological mean

0.1

0.0f
-0 F
-0.2F

-0.3F

-0.4

-2 —1 0 1 2
[Wm2] avg: -3.46e-1

Mezuman et al., in preparation (A)



Overall fire aerosols have a cooling
effect on the climate system

fire aerosol SWF = (all — no fire) aerosol SWF

10-year climatological mean
2005 10-year climatological mean

To afirst degree follows
seasonality of BB emissions

-0.1
-0.2
-0.3

[Wm?]

-0.4

JAN APR JUL OoCT

-2 —1 0 1 2
[Wm2] avg: -3.46e-1

Mezuman et al., in preparation (A)



A warming signal along with a
decrease in dust emissions (and load)
due to decreases wind

fire aerosol SWF = (all — no fire) aerosol SWF

10-year climatological mean
2005 10-year climatological mean
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A warming signal along with a
decrease in dust emissions (and load)
due to decreases wind

fire aerosol SWF = (all — no fire) aerosol SWF

10-year climatological mean

2005 10-year climatological mean
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Mezuman et al., in preparation (A)



Annually fire aerosols have a cooling
effect on the climate system

fire aerosol SWF = (all — no fire) aerosol SWF
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10-year climatological mean

2005 10-year climatological mean

oOMfFT—™—™——— T T T T T T T T T ]

Ml TR R R R PR TR R R RN

-0.2F

-0.3F 3

-0.4 A T T SR 3

-2 —1 0 1 2
[Wm2] avg: -7.52e-2

Mezuman et al., in preparation (A)



A weaker forcing is observed for the
preindustrial along with less fire
emissions

fire aerosol SWF = (all — no fire) aerosol SWF
1850
10-year climatological mean
1850 10-year climatological mean
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By excluding the effects of coarse”
aerosols a clearer fire signal is

observed
fire aerosol SWF = (all — no fire) aerosol SWF
*excluding mineral dust and sea salt 1850
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Conclusions

® Fire pollution is substantial in PI, PD and future

® strongestin the tropics
® Qverall fire aerosols cool the climate (PD mean SWF
-0.075 Wm-2)

® To a first degree this is controlled by BB emissions

e Seasonality
e Magnitude (smaller emissions and SWF in PI)

® Complex effects at play need further study:

e fire-climate feedbacks /\
e natural variability P >

air quality| climate




