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Fire	ac2vity	is	driven	by	environmental	
parameters	and	human	behavior	
	

Ward	et	al.,	2012	



Fires	are	a	source	of	air	pollu2on	
	
	

Ward	et	al.,	2012	



Fires	have	a	range	of	climate	impacts	
	
	

Ward	et	al.,	2012	



Did	all	this	smoke	cool	the	surface?	

Can	fires	affect	weather	
	
	
Clear-sky	AOD	on	August	15	18:00	UTC		

Courtesy	of	Robert	Field	



>	5	°C	cooling	under	plume	

Can	fires	affect	weather	
	
	

Courtesy	of	Robert	Field	

Simulated	August	2017	

Modeled	surface	temperature	difference	(fire	-	no	fire)	



Simula2ng	fires	interac2vely	is	a	tool	to	
study	biosphere	forcing	and	feedbacks	

In	past,	present	and	future…	
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NASA-GISS	PyrE		
Ini2al	fire	condi2ons	set	by	flammability

2005	Annual	mean	

“VPD	appears	to	be	a	simple	and	holisGc	indicator	of	
regional	water	balance”	–	Williams	et	al.,	2015	

Assuming	no	vegeta2on	change	
b/t	2me	periods	

Pechony	and	Shindell	(2009,	2010)	



Explicitly	calcula2ng	igni2on	and	suppression

Pechony	and	Shindell	(2009,	2010)	
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Price	and	Rind,	1993		



Explicitly	calcula2ng	igni2on	and	suppression

Pechony	and	Shindell	(2009,	2010)	
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Venevsky	et	al.,	2002		

Popula2on	density	
increases	with	2me	

!! = 0.2 ⋅ !!!.!!

Empirical	scaling	factors:		
magnitude				spaGal	distribuGon	



Explicitly	calcula2ng	igni2on	and	suppression

Pechony	and	Shindell	(2009,	2010)	
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CIESIN	

Popula2on	density	
increases	with	2me	

Fire	suppressions	ranges	(exponenGally):	
5%	in	unpopulated	areas	
95%	in	densely	populated	areas		
(more	than	100	people∕km2)	



Fire	counts	are	a	func2on	of		
flammability,	igni2on,	and	suppression	
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Scaling	factor	based	on	MODIS	fire	counts	

Pechony	and	Shindell	(2009,	2010)	



Adding	a	physical	parameteriza2on	
for	fire	spread	and	burned	area	(BA)	
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Mezuman	et	al.,	in	preparaGon	(A)	

Based	on	CLM’s	parameteriza2on	(Li	et	al.,	2012)	



Adding	a	physical	parameteriza2on	
for	fire	spread	and	burned	area	(BA)	
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Mezuman	et	al.,	in	preparaGon	(A)	

!!! = !" ⋅ !"# + BA!!! − !!		
new	BA										previous	BA			recovered	BA	



Offline	burned	area	(BA):	
MODIS	FC	
Surface	RH,	wind	speed	from	a	2001	nudged	simulaGon	
ENT	DVGM’s	recovery	Gme	

Mezuman	et	al.,	in	preparaGon	(A)	
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Fires	affect	atmospheric	composi2on	
through	interac2ve	emissions	

Mezuman	et	al.,	in	preparaGon	(A)	



Emission	Per	Fire	Count	(EPFC)	

1"
"

For"each"grid"box"(i, j)"a"set"of"!!linear"equations"is"constructed:"

!!"#$"%&'( !, ! = MODIS!" i, j ⋅ !"#$!"#!!"#$ ! ⋅ !!"#$!"#!!"#$(i, j)
!

!"#!!"#$!!
"

"
!"7""number"of"vegetation"types"(i.e."grassland,"rainforest"etc.)"
!!"#$"%&'("7"fire"emissions"in"the"grid"box"(AR5,"GFED2,3,"etc.)"
!"#$!!" "7"MODIS"fire"count"in"the"grid"box"
!"#!!"#$%&" "7"fraction"of"each"vegetation"type"in"the"grid"box"
!"#!!"#!!"#$!"!EPFC!factor!for!each!vegetation!type!(the!unknown)!
"
Solution"of"linear"equations"using"least7squares"minimization"method"
"

!!"#$% !, ! = MODEL!" i, j ⋅ !"#$!"#!!"#$ ! ⋅ !!"#$!"#!!"#$(i, j)
!

!"#!!"#$!!
"

"
"

Mezuman	et	al.,	in	preparaGon	(A)	



Emission per fire count (EPFC) AR5
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EPFC	is	a	func2on	of		
flammable	surface	type	and	species	

Tuned against AR5
Most	emissions	
are	of	CO	and	OA	

Mezuman	et	al.,	in	preparaGon	(A)	



Emission	Per	Fire	Count	(EPFC)	

1"
"

For"each"grid"box"(i, j)"a"set"of"!!linear"equations"is"constructed:"

!!"#$"%&'( !, ! = MODIS!" i, j ⋅ !"#$!"#!!"#$ ! ⋅ !!"#$!"#!!"#$(i, j)
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!"#!!"#$%&" "7"fraction"of"each"vegetation"type"in"the"grid"box"
!"#!!"#!!"#$!"!EPFC!factor!for!each!vegetation!type!(the!unknown)!
"
Solution"of"linear"equations"using"least7squares"minimization"method"
"

!!"#$% !, ! = MODEL!" i, j ⋅ !"#$!"#!!"#$ ! ⋅ !!"#$!"#!!"#$(i, j)
!

!"#!!"#$!!
"

"
"

Mezuman	et	al.,	in	preparaGon	(A)	
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Fires	affect	atmospheric	composi2on	
through	interac2ve	emissions	

ambient 
concentrations 

Set	by	the	model’s	physics	and	chemistry:	
transport,	deposiGon,	chemical	interacGons	

Mezuman	et	al.,	in	preparaGon	(A)	



Applica2ons	

	
Study	fire	pollu2on	and	health	impacts	

•  Evaluate	climate	impact	and	radia2ve	forcing	
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2005	

[2.04	μg	m-3]	 [1.59	μg	m-3]	

Regardless	of	2me	period	fire	pollu2on	(surface	
PM2.5)	is	high																																													*excluding	dust	and	sea	salt	

Mezuman	et	al.,	
in	preparaGon	(B)	

[0.44	μg	m-3]	22%	of	total	

[1.07	μg	m-3]	 [0.62	μg	m-3]	 [0.44	μg	m-3]	41%	of	total	

[1.56	μg	m-3]	 [0.93	μg	m-3]	 [0.62	μg	m-3]	40%	of	total	

1850	

2100,	RCP8.5		

	All																			-															no	fire															=									fire	pollu2on	
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2005	

[2.04	μg	m-3]	 [1.59	μg	m-3]	

Annually,	fire	pollu2on	(surface	PM2.5)	is	domina2ng	
in	the	tropical	con2nental	regions									*excluding	dust	and	sea	salt	

Mezuman	et	al.,	
in	preparaGon	(B)	
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Applica2ons	

	
Study	fire	pollu2on	and	health	impacts	

Evaluate	climate	impact	and	radia2ve	forcing	
	



SEP	2005
10-year	climatological	mean	

JAN							  			APR						  					JUL								  			OCT	

[Wm-2]	

2005 10-year climatological mean 

[Wm-2]	avg:	-3.46e-1	

Overall	fire	aerosols	have	a	cooling	
effect	on	the	climate	system	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	



SEP	2005
10-year	climatological	mean	

JAN							  			APR						  					JUL								  			OCT	

[Wm-2]	

2005 10-year climatological mean 

[Wm-2]	avg:	-3.46e-1	

Overall	fire	aerosols	have	a	cooling	
effect	on	the	climate	system	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	

To a first degree follows 
seasonality of BB emissions 
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[Wm-2]	

2005 10-year climatological mean 

[Wm-2]	avg:	5.69e-2	

A	warming	signal	along	with	a	
decrease	in	dust	emissions	(and	load)	
due	to	decreases	wind	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	

FEB	2005
10-year	climatological	mean	
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[Wm-2]	

2005 10-year climatological mean 

[Wm-2]	avg:	5.69e-2	

A	warming	signal	along	with	a	
decrease	in	dust	emissions	(and	load)	
due	to	decreases	wind	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	

FEB	2005
10-year	climatological	mean	

Two	things	could	be	at	play:	
•  fire-climate	feedbacks		
•  natural	variability		
Ø  Requires	further	invesGgaGon	



JAN							  			APR						  					JUL								  			OCT	

[Wm-2]	

2005 10-year climatological mean 

[Wm-2]	avg:	-7.52e-2	

Annually	fire	aerosols	have	a	cooling	
effect	on	the	climate	system	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	

2005
10-year	climatological	mean	



[Wm-2]	

[Wm-2]	avg:	-3.63e-3	

A	weaker	forcing	is	observed	for	the	
preindustrial	along	with	less	fire	
emissions	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	

Mezuman	et	al.,	in	preparaGon	(A)	

1850
10-year	climatological	mean	

1850 10-year climatological mean 

JAN							  			APR						  					JUL								  			OCT	



[Wm-2]	

[Wm-2]	avg:	-7.39e-2	

By	excluding	the	effects	of	coarse*	
aerosols	a	clearer	fire	signal	is	
observed	
fire	aerosol	SWF	≡	(all	–	no	fire)	aerosol	SWF	
*excluding	mineral	dust	and	sea	salt	
	

Mezuman	et	al.,	in	preparaGon	(A)	

1850
10-year	climatological	mean	

1850 10-year climatological mean 

JAN							  			APR						  					JUL								  			OCT	



Conclusions	

•  Fire	polluGon	is	substanGal	in	PI,	PD	and	future	
•  strongest	in	the	tropics	

•  Overall	fire	aerosols	cool	the	climate	(PD	mean	SWF	
-0.075	Wm-2)	

•  To	a	first	degree	this	is	controlled	by	BB	emissions	
•  Seasonality	
•  Magnitude	(smaller	emissions	and	SWF	in	PI)	

•  Complex	effects	at	play	need	further	study:		
•  fire-climate	feedbacks		
•  natural	variability		

air	quality	 climate	


