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Preface: 
The original award (NOA Grant No. NA14OAR4310234) was terminated as of 9/30/2016 and a 
portion of the remaining funds was reissued as a new grant with an anticipated period of 
performance of 5/1/2017-4/30/2018. Prior to NA14OAR4310234 being terminated, Task 1 was 
completed, and Tasks 2, 3, and 4 were partially completed. As of the termination date of the 
original award, work on this project continued, and tasks 3 and 4 were partially completed during 
the interim period of 10/1/16-4/30/17 while PSU awaited NOAA to reissue the transferred 
award.  
The revised work plan, which includes pre-award work completed since 10/1/16 and relates to 
original Tasks 3, 4 and 7, is as follows: 
 

 Implement the ensemble data assimilation  to characterize the land state initial condition 
uncertainty used for Drought Monitoring  

 Implement the probabilistic drought forecast, using the multivariate statistical approach. 
The sensitivities of the forecast model to different predictors and Copula functions will 
be evaluated. Forecasts are generated for different lead times. 

 Conduct retrospective assessment on drought prediction skills and compare with 
experienced drought events across the CONUS. In this process both deterministic and 
probabilistic verification measures are employed 

We completed all the above tasks and we even went beyond the project commitments by 
extending our work to the following: 
 

a. Post-processing of NMME precipitation data, which can be used by the community as a 
refined forcing data to land surface models for drought monitoring and forecasting and 
beyond (published work by Khajehei et al., 2017) 

b. Assessment of uncertainty of ensemble-based gridded observations in land surface 
simulations and drought assessment 

c. A comparative assessment of projected meteorological and hydrological droughts: 
Elucidating the role of temperature 

 
Since we provided a final report on the earlier results and achievements of the original project, in 
this final report we only present the project accomplishments for the period of performance of 
5/1/2017-4/30/2018. However, all the publications and presentations reflect all delivered material 
for both original and amended projects.  
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1 Results and Accomplishments 

1.1 Post-processing of the North American multi-model ensemble (NMME) precipitation 

forecasts over the continental US 

The North American multi-model ensemble (NMME) forecast system provides valuable 
information for climate variables at different lead times over the globe. A Bayesian ensemble 
post-processing approach based on Copula functions (COP-EPP) is employed to bias-correct the 
NMME precipitation forecast from 11 models (totaling 128 ensemble members). The study is 
conducted over the Continental United States (CONUS) for the hindcast period of 1982–2010 at 
lead-0, and the forecast period of 2012–2015 at four different lead times of lead-0 to lead-3 and 
the results are verified using deterministic and probabilistic measures. COP-EPP is compared 
with a widely-used bias-correction technique, the Quantile Mapping (QM). Although the NMME 
forecasts show to be more accurate across the eastern United States, large bias is found over the 
great plains of the central US. However, QM and COP-EPP present significant improvements 
over the NMME forecasts, with COP-EPP proving to be more reliable and accurate across the 
CONUS. In addition, COP-EPP substantially improves the temporal and spatial variability of the 
intra-seasonal NMME forecasts, even at lead-3. 
 
 

 
Fig. 1 Schematic procedure of the Copula ensemble post-processing (COP-EPP) used in this 
study 
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Fig. 2. Absolute percent bias of monthly precipitation calculated for the validation period of 2001–2010 
The NMME model and bias-corrected precipitation by QM and COP-EPP methods are presented in red, 
yellow, and blue boxes, respectively 
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Fig. 3. Probabilistic forecast verification of the NMME (128 ensemble members), QM, and COP-EPP for 
the validation period of 2001–2010 
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Fig. 4. Success rate calculated for the probabilistic verification measures in seven climate regions of the 
CONUS 

	

1.2 Uncertainty of ensemble-based gridded observations in land surface simulations and 

drought assessment 

Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought 
early warning systems. Several sources of uncertainty in hydrologic modeling have been 
addressed in the literature. However, few studies have assessed the uncertainty of gridded 
observation datasets from a drought monitoring perspective. This study provides a hydrologic 
modeling oriented analysis of the gridded observation data uncertainties over the Pacific 
Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 
100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8 spatial 
resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a 
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deterministic observation. Meteorological and hydrological droughts are studied at multiple 
timescales over the basin, and seasonal long-term trends and variations of drought extent is 
investigated for each case. Results reveal large uncertainty of observed datasets at monthly 
timescale, with systematic differences for temperature records, mainly due to different lapse 
rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an 
increasing trend is found for winter drought extent across the PNW. Furthermore, a ~3% 
decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region 
being more susceptible to SWE variations of the northern Rockies than the western Cascades. 
The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as 
a result of precipitation decline, which implies higher appeal for anthropogenic water storage and 
irrigation systems. 
 
Table 1. Summary of the characteristics of the gridded observation datasets utilized in this study 

 

 
Fig. 5. Long-term seasonal mean of hydro-meteorological variables for the period of 1980–2011. 
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Fig. 6. Time series of mean seasonal drought extent of PNW at 6-month accumulation period for L13 and 
N15 simulations. 
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Fig. 7. Linear trend of drought extent in each season presented as the percentage change per decade. 
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1.3 A comparative assessment of projected meteorological and hydrological droughts: 

Elucidating the role of temperature 

The changing climate and the associated future increases in temperature are expected to have 
impacts on drought characteristics and hydrologic cycle. This part of study investigates the 
projected changes in spatiotemporal characteristics of droughts and their future attributes over 
the Willamette River Basin (WRB) in the Pacific Northwest U.S. The analysis is performed 
using two subsets of downscaled CMIP5 global climate models (GCMs) each consisting of 10 
models from two future scenarios (RCP4.5 and RCP8.5) for 30 years of historical period (1970–
1999) and 90 years of future projections (2010–2099). Hydrologic modeling is conducted using 
the Precipitation Runoff Modeling System (PRMS). Meteorological and hydrological droughts 
are studied using three drought indices (i.e. Standardized Precipitation Index, Standardized 
Precipitation Evapotranspiration Index, Standardized Streamflow Index). Results reveal that the 
intensity and duration of hydrological droughts are expected to increase over the WRB, albeit the 
annual precipitation is expected to increase. On the other hand, the intensity of meteorological 
droughts do not indicate an aggravation for most cases. We explore the changes of 
hydrometeolorogical variables over the basin in order to understand the causes for such 
differences and to discover the controlling factors of drought. Furthermore, the uncertainty of 
projections are quantified for model, scenario, and downscaling uncertainty. 
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Fig. 8. Duration of meteorological drought in 30-year intervals. 
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Fig. 9. Observed and simulated monthly streamflow forced by MACA (top) and BCSD (bottom) datasets 
at the outlet of Willamette Basin. 
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Fig. 10. The number of hydrological drought events for each GCM in 30-year intervals. MACA results 
are shown in the top panel followed by BCSD in the middle. The boxplots 
at the bottom are showing the spread of 10 GCMs for each time span. 
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Fig. 11. Duration of hydrological drought in 30-year time intervals. In each case, duration of drought is 
calculated for each GCM, and then the ensemble mean of 10 GCMs is plotted in the figure. 
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1.4 A Parallel Particle Filtering Framework for Drought Monitoring using Remotely 

Sensed Data Assimilation Across CONUS 

 
 
Fig 12. The flowchart of the offline coupling interface of the VIC model and the PMCMC data 
assimilation algorithm. The ensemble files indicate the ensemble members of the PMCMC algorithm. A 
one-day VIC model simulation and PMCMC updating are shown in this flowchart.  
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Fig 13. The flow diagram of the parallel particle filtering framework (PPFF) using Message Passing 
Interface (MPI). The domain decomposition parallel strategy is used in the PPFF: each grid cell is 
simulated in parallel while each ensemble member is simulated sequentially. 
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Fig 14. Comparison of the drought monitoring skill between open-loop (OL) and data assimilation (DA) 
for May-August 2012 (Synthetic Study). 
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Fig 15. Comparison of the drought intensity over the CONUS from open-loop (OL), data assimilation 
(DA), and U.S. Drought Monitoring (USDM) 
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Figure 16. Comparison of U.S. Drought Monitoring (USDM) and Data Assimilation (DA) drought 
monitoring extent for five different drought categories (D0-D4) over the Central U.S. The drought extent 
is comprised of the 7-State region of Nebraska, Iowa, Kansas, Missouri, Oklahoma, Arkansas, and 
Illinois. 
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1.5 A Dynamical-Statistical Modeling Framework for Probabilistic Drought Forecasting 

In order to improve the drought forecasting skills, this part of the study builds on the earlier work 
we conducted over the pacific Northwest US and present a dynamical-statistical system over the 
CONUS with a combination of land data assimilation based on particle filtering and a 
probabilistic drought forecasting model based on multivariate copula functions. The novelty of 
this hybrid system is to use data assimilation technique to quantify land initial condition 
uncertainty, as opposed to a single deterministic initial condition implemented in the current 
operational drought forecasting systems. Consequently, monthly to seasonal drought forecasting 
products are generated using the updated initial condition. The implementation of the hybrid 
system is demonstrated with the 2012 summer drought event across the Central U.S. Synthetic 
study results suggest that the hybrid dynamical-statistical system improves the monthly to 
seasonal drought forecasting skills. For real case study, compared with the National Oceanic and 
Atmospheric Administration Climate Prediction Center’s Seasonal Drought Outlook, the hybrid 
system can better forecast the 2012 summer drought event in Central U.S. Also, it is shown how 
sensitive the monthly to seasonal drought forecasting skill is to the initial conditions, which can 
better facilitate the state drought preparation and mitigation. 
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 Figure 1. The framework of the hybrid dynamical-statistical drought forecasting system. The 
four probability distributions associated with the meteorological forcing, remotely sensed data, 
model predictions, and initial conditions represent the corresponding uncertainties. For each 
forecasting date, an updated initial condition shown as “yellow star” is sampled from the 
probability distribution and input to the multivariate copula model to generate probabilistic 
drought forecasts. 
 

 
Figure 2. Conditional probability density distributions (PDFs) of spring (April–June, AMJ) 
cumulative soil moisture given the drought status in the past winter. Each PDF is associated with 
a particular winter drought status (D0–D4). Darker lines indicate more severe drought in the past 
winter.  
 
 

 
Figure 3. The monthly to seasonal drought forecasting framework using the multivariate copula 
model. 
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Figure 4. Synthetic study- Monthly probabilistic drought forecasts of both OL and DA for May–
August in 2012. The probabilistic drought conditions in each month are forecasted using the 
root-zone soil moisture in the previous month. The color bar indicates the probability (%) of a 
grid cell under drought (D0–D4). 
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Figure 4. Monthly probabilistic drought forecasts of both OL and DA for May–August in 2012. 
The probabilistic drought conditions in each month are forecasted using the root-zone soil 
moisture in the previous month. The color bar indicates the probability (%) of a grid cell under 
drought (D0–D4). 
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Figure 9. The seasonal probabilistic drought forecasts between the open-loop (OL) and data 
assimilation (DA) for May–July 2012. The probabilistic drought conditions in May–July are 
forecasted using the root-zone soil moisture in February–April. Top panel: the maximum 
likelihood forecasted drought type. Bottom panel: the forecasted probability (%) under drought 
(D0–D4). 
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Figure 11. The comparison of the NOAA CPC’s Seasonal Drought Outlook (top) and the 
maximum likelihood estimation (MLE) seasonal drought forecast (bottom) based on the 
proposed dynamical-statistical system for summer drought event in 2012. 
 
 
Results from both synthetic and real case studies suggest that the dynamical-statistical drought 
forecasting system improves monthly to seasonal drought forecasting skills, and can facilitate the 
drought detection, preparation, and effective response. In addition, our dynamical-statistical 
forecasting system can generate both the probabilities for areas under drought and the most likely 
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intensity of future drought events. Compared to a single drought forecasting product provided in 
the current operational system, these two drought products can provide much more flexibility 
and information for decision makers and water resource managers. It is noted that the dynamical-
statistical system is examined using one drought event in this study. We acknowledge that more 
case studies are needed to further verify the efficiency of this drought forecasting system. A 
practical path forward that we are currently implementing is to make this system operational and 
then examine the monthly to seasonal drought forecasts with USDM and other resources. 
 
 

2 Highlights of Accomplishments 

 A modular parallel data assimilation framework (PDAF) based on particle filter has been 

developed for the computational-demand large-scale hydrologic modeling. 

 Copula-based probabilistic drought forecasting model is developed to couple with the 

updated initial conditions through data assimilation 

 Based on the meteorological drought index used, significant changes are anticipated for 

the future drought characteristics.  

 The duration and intensity of hydrological drought events are estimated to increase. Also, 

increasing trend in streamflow of high-flow months and decreasing trend in streamflow 

of low-flow months are seen, indicating higher risk of winter floods and summer 

droughts. 

 The temperature changes will alter the amount of snowpack as well as the snowmelt 

onset, which will change the streamflow patterns, resulting in exacerbated hydrological 

droughts. 

 A parallel computing for particle filtering data assimilation is necessary for large-scale  

applications. 

 Remotely sensed soil moisture assimilation considerably improves drought monitoring 

skills 

 Solely assimilating streamflow can lead to biased soil moisture estimation  

 When the study area is partially covered by the satellite data, the geostatistical approach 

can help estimate the soil moisture for those uncovered grid cells  

 Joint assimilation of streamflow and soil moisture from geostatistical modeling can 

further improve the surface soil moisture prediction. 
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 Two drought case studies in the Pacific Northwest showed that the proposed system 

improved the drought forecasting skill and can facilitate the state drought preparation. 

 Studying drought using the SPI is found to be inadequate for climate change impact 

assessment, and SPEI can be a practical alternative, which also considers the effects of 

temperature. 

 Copula based- postprocessing (COP-EPP) is successful in improving the accuracy of the 
NMME. However, COP-EPP shows robustness in bias-correcting precipitation in arid 
and semi-arid areas (Great Plains and southwestern US), and it generally shows 
superiority over QM results. 

 COP-EPP proves to be a robust technique for bias-correcting future precipitation 
forecasts and it is able to enhance the spatial variability at monthly to seasonal 
timescales. 

 Observation forcing uncertainty is high at monthly timescale, which eventuates in high 
disparities in hydrologic fluxes and drought characteristics. 
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