NOAA Model Diagnostics Task Force (MDTF)
Description of diagnostics Applied Programming Interface (API)

1. Motivation

A critical need exists to improve the diagnosis of global climate and forecasting models. A key
need is incorporation of process-oriented diagnostics into standard diagnostics packages that
can be applied to development versions of the models, allowing the application of diagnostics
to be repeatable across multiple model versions. A "process-oriented diagnostic" characterizes
a specific physical process or emergent behavior that is hypothesized to be related to the ability
to simulate an observed phenomenon. A significant barrier is the lack of a mechanism for
getting community-developed diagnostics into the modeling center development process.

To reduce this barrier, the MDTF aims to create a diagnostic package that is portable,
extensible, usable, and open for contribution from the community. A goal is to allow diagnostics
to be repeatable inside, or outside, of modeling center workflows. These are diagnostics
focused on model improvement, and as such a slightly different focus from other efforts.
Hopefully these diagnostics will be compatible with other efforts.

The Application Programming Interface (API) described below takes this motivation and is
developed with several additional practical principles. (A) Diagnostics need to be open source
and (B) need to be able to run on Climate and Forecast (CF) model output formats (i.e. CMIP
format).

The API described below is being developed by the NOAA Model Diagnostics Task Force
provides the specifications for a common and extensible mechanism for rapid dissemination of
process-oriented diagnostics across modeling centers.

2. API Description

Two current options are to embed diagnostics into an existing variability package (e.g. that
which runs at NCAR and GFDL, originally the NCAR AMWG Variability Package), or to use a new
diagnostic script detailed in this document. They should be interoperable, and the new script a
lightweight version of the package. A script will provide a portable mechanism for developing
and running diagnostics that an individual user can run. It can also serve as the basis for
collecting diagnostics into the center workflows.

API Sample
The Application Programming Interface (API) for the diagnostic script consists of a python script
that does 3 things:

1. Set up paths and variable names
2. Call custom diagnostics to generate plots
3. Compose plots into a web page



The python script can be stand alone, or can be built into the NCAR and GFDL workflows.

The prototype implementation of the concept is now available in a demonstration for internal
testing by the MDTF team, which runs a sample diagnostic on CESM model output, and
composes a web page with a set of figures. These steps are described below.

User Diagnostics

Diagnostic utilities (user developed code that generates analysis and plots) just have to be
callable from python by an open source package. Python would be recommended for the
diagnostic utilities, but not required. NCL or Fortran are other recommended options. We will
not specify the language of the code, although it is strongly recommended to use open source
code, and not write diagnostics in a proprietary package/program that needs a license. While
diagnostic code in a proprietary package might be able to run locally in a modeling center given
appropriate licenses, such code may limit wider dissemination. Note that there exist many open
source approximations (and even specific python approximations) of many common
proprietary packages (e.g. matplotlib in python is based on MATLAB).

Observational datasets

Naturally observations for model evaluation are an important part of the package. Observations
should be focused on the diagnostic at hand, and ‘preprocessed’ as much as possible (e.g.
climatologies, distribution functions) for direct and efficient application to model results.
Ideally, plots based on observations can be produced in advance and included in the package.
The goal is not to dumb down the evaluation, but to pre-process observations to improve
efficiency and processing speed, and to reduce the need to send around large volumes of data
with the package.

How does this work in practice? A satellite data set that is processed for example on a profile by
profile basis (L2) and then gridded into seasonal climatologies for comparison to observations
should be preprocessed so only the final gridded seasonal field is present in the package. Or, a
high frequency diagnostic for precipitation intensity can be pre-processed into a PDF of several
values (or raw counts in bins) in space and time. Diagnostics can process raw observations, but
should have an option to read in a pre-calculated curve from a netCDF file to save time (and the
option to write the file for the curve if desired). The pre-processed observations could be
supplied with the package code.

Output

The output will be a series of figures (suggest gif, png, jpg) and HTML code that links the figures
together with links, and then compresses the whole package of figures and HTML so they can
be posted on a web server. Figures are thus aimed at screen/web resolution. If postscript is
generated they should be converted to something commonly displayed on a web page. An
option to save postscript is available in the sample package.



The diagnostics should output a list of figure file names. There is a block of code that can parse
the file names into links for HTML. An example is contained in the demonstration code being
tested by the MDTF. Note that a diagnostic could build a custom web page that could be linked
to the diagnostics as well with a single link.

The method permits an iterative approach: diagnostics run in series (now), but independently,
and contribute to a common web page. The result is a very extensible package, where a user
can work on one diagnostic, submit it, and grow a library of diagnostics.

In addition, the MDFT will aim to produce a routine to calculate terms for the Moist Static
Energy (MSE) budget from both GFDL and NCAR models. This might be one routine for each
model. We might include both a direct calculation of the vertical advection term and also the
vertical advection term computed as a residual. The goal will be to provide standard output for
the MSE budget terms that other diagnostics can use, and maybe some basic plots. This can be
built into the MDTF diagnostics. Other common calculations are possible as well.

Detailed Elements of the Diagnostic API

The initial package contains a simple python script (mdtf.py) that executes a single sample
diagnostic, easily extensible to a broader set of diagnostics.

A. Paths and Variable Names

The input is model output file names and a structure of paths to the data, diagnostics and
output. We will set up appropriate variable names for CESM and GFDL, as well Climate and
Forecast (CF) metadata variable names for CMIP5/6 model output. This should enable users to
read any model format. The demonstration code currently produces an example for CESM. We
may eventually read in these names from python files for clarity, and the eventual goal is to
convert the internal names to use CF conventions.

B. Call custom diagnostics to generate plots

This is a simple part of the overall script that calls a series of python interfaces to diagnostics.
This could most simply be a python script that has inherited all the paths from the main
diagnostic script. The example shown actually uses ‘sub-process’ calls to call an NCL (NCAR
Command Language) script. Fortran would be another example of something that could
commonly be called. As mentioned above, proprietary packages such Matlab would be
discouraged.

C. Compose plots into a web page

The last component occurs in two places: the overall driver script sets up the web page and
header before diagnostics are called (eventually this will be a sub-process/subroutine/function



call). Finally, after diagnostics it will also finish the footer for the web page, and then compress
the html and plots together.

The individual diagnostics have to process files (for example, convert to a web readable format
from postscript) and make sure they are in an appropriate directory. They also need to write to
the common HTML web page the links to the images, and any desired text. A sample of how to
do this simply is provided, and can be copied and pasted into the diagnostics.

A diagnostic can also build its own separate web page, as long as it is linked to in the master
web page.

The goal is that the web page is extensible. Eventually it could be formatted into a series of
pages, but for now (first phase) a single page is appropriate.

The goal is to have the architecture that implements the API in a series of scripts available for
download (likely from NCAR). Ideally we would include user-developed diagnostics back into
the script, with options to turn them on and off as desired.

3. Opportunities for Extension to the Broader Community

Long term, the diagnostics are complementary with the ESMval (https://www.esmvaltool.org/)
package format, and should be extensible into that framework. However, opportunities may be
available for more immediate dissemination to other modeling centers. While the package
being developed should be sufficiently user-friendly such that it easily adopted, dissemination
to other modeling centers will likely be aided through development of collaborations with
centers such as NASA Goddard, Lawrence Livermore National Laboratory, and the UK Met
Office, as well as collaborations with international bodies such as WMO’s WCRP Working Group
on Climate Modeling (WGCM), Working Group on Numerical Experimentation (WGNE), and the
WGNE Madden-Julian Task Force that are promoting dissemination of process-oriented
diagnostics. Members of the NOAA Model Diagnostics Task Force have existing collaborations
at these institutions that might be exploited to ease incorporation of these diagnostics into the
respective modeling center evaluation packages. Fostering such collaborations will be
encouraged as this diagnostic development activity matures. Encouragement will also be made
for external diagnostic developers to contribute to the package. Opportunities for
advertisement to the broader diagnostic community will exist at scientific conferences, postings
on websites (e.g. MAPP program), and in online newsletters.



