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O C E A N  D A  C O L L A B O R AT I O N S :

• NCEP/CPC/EMC: operational replacement from the MOM3 3DVar-GODAS to MOM6 
Hybrid-GODAS (Sluka, Xue, Behringer) 

• NCEP/EMC: ocean initialization for coupled HWRF/HYCOM forecasts (Dong, Mehra) 

• NCEP/EMC: wave model initialization for CFSv3 (Flampouris) 

• NCEP/EMC: sea-ice model initialization for CFSv3 (Wu, Vernieres, Grumbine, Saha) 

• NRL-Stennis: 1/12º Global HYCOM-based Ocean-LETKF (Wei) 

• NASA GMAO: MOM5 configuration of Ocean-LETKF (matching CFSR 1/2º resolution) 
to be use for MERRA2 Ocean reanalysis, coupled with Sea-Ice LETKF. (Vernieres) 

• INCOIS (India; Paul, Reddy), and INPE (Brazil): ROMS-based Ocean-LETKF (Lima) 

• INCOIS nested 1/4º MOM4p1-LETKF inside global 1/2º MOM4p1-LETKF (Rahaman)



S U M M A R Y

• Brief DA overview 

• Advancements at NCEP 

• Future trends in ocean DA 

• Needs from Ocean Observing System development to 
support DA



B R I E F  D A  O V E R V I E W
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A D VA N C E M E N T S  AT  N C E P



2 1 - Y E A R  H Y B R I D - G O D A S  R E A N A LY S I S

92 94 96 98 00 02 04 06 08 100

1

2

3

4

rm
sd

 (º
C

)

Temperature

92 94 96 98 00 02 04 06 08 10
−1

−0.5

0

0.5

1

date

bi
as

 (º
C

)

Temperature

3DVar

Hybrid-GODAS

92 94 96 98 00 02 04 06 08 100

0.2

0.4

0.6

0.8

rm
sd

 (p
su

)

Salinity

92 94 96 98 00 02 04 06 08 10
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

date

bi
as

 (p
su

)

Salinity

3DVar

Hybrid-GODAS

3-month moving averages
T E M P E R AT U R E  A N D  S A L I N I T Y  ( O - F )  R M S D  A N D  B I A S  R E D U C E D   

U S I N G  T H E  H Y B R I D - G O D A S  ( 5 - D AY  F O R E C A S T S )

Pre-Argo Argo-Era



E Q U AT O R I A L  PA C I F I C  A D C P *
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Along-track Jason-2 & Cryosat2 plus gridded OSTIA SST 

A S S I M I L AT I O N  O F  A D T  A LT I M E T R Y

AVISO ADT 
(observed)

N. Atlantic

Ocean-LETKF  
w/ ADT, updating 
only T&S

Baseline  
MERRA-Ocean ADT

Control (SST only)

Assimilating: 
After 1 month 

w/ daily analysis cycle

Thanks to: Guillaume Vernieres



G L O B A L  D R I F T E R  P R O G R A M  ( G D P )  D ATA
GOALS:  

• Use drifter positions to improve near surface current estimates 
• Update upper ocean T & S based on ensemble-derived error covariances 
• Use GDP temperature measurements to bias-correct SST data

source: http://www.aoml.noaa.gov/phod/dac/index.php 

http://www.aoml.noaa.gov/phod/dac/index.php


Thanks to: Luyu Sun, UMD
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I N V E S T I G AT I O N  O F  S O U R C E S  O F  
U N C E R TA I N T Y  I N  E N S E M B L E  O C E A N  D A
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Spread on ocean surface – 06/Feb/2009 (After 1 month of 
model integration)

Thanks to: 
Leonardo 

Lima
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Rain

Spread on ocean surface – 29/10/2009 

I N V E S T I G AT I O N  O F  S O U R C E S  O F  
U N C E R TA I N T Y  I N  E N S E M B L E  O C E A N  D A

(After 10 months of 
model integration)

Thanks to: 
Leonardo 

Lima



• highest correlations above MLD 
• included a MLD calculation 
• de-bias regional SST innovation 
• split 2-layer localization

A S S I M I L AT I O N  O F  B I A S - C O R R E C T E D  
S S T  I N N O VAT I O N S

Thanks to: Leonardo Lima

Average mixed 
layer depth 
(MLD)

Correlations between SST and the 
temperature in 50, 100 and 200 m



Temperature Profiles Salinity Profiles

A S S I M I L AT I O N  O F  B I A S - C O R R E C T E D  
S S T  I N N O VAT I O N S :  R M S D

Regional average after 15 days assimilation



W AV E  F O R E C A S T  B I A S  C O R R E C T I O N  
U S I N G  N E U R A L  N E T W O R K S

• Ensemble Wave Data Assimilation (LETKF) 

• Biased Corrected forecast (Neural Network)

Thanks to: Flampouris (DA) and Campos (NN)

Ensemble 
Spread 

over 
forecast 

lead times 
0-10 days



C O U P L E D  D ATA  A S S I M I L AT I O N



S T R O N G LY  C O U P L E D  D ATA  A S S I M I L AT I O N
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I M P L E M E N TAT I O N  O F  T H E  S T R O N G LY  C O U P L E D   
L O C A L  E N S E M B L E  T R A N S F O R M  K A L M A N  F I LT E R  ( L E T K F )

Strongly Coupled LETKF 

•  Sharing(of(observa/onal(
departures(allows(system(to(act(
as(single(strongly)coupled)
system.(

•  Separate(LETKF(for(each(domain(
helps(keep(implementa/on(
simpler.(Ocean)LETKF)and)
Atmosphere)LETKF)can)be)
developed)independently.(

Sluka,(T.(C.,(S.(G.(Penny,(E.(Kalnay,(and(T.(Miyoshi(
(2016),(Assimila/ng(atmospheric(observa/ons(into(
the(ocean(using(strongly(coupled(ensemble(data(
assimila/on,(Geophys.)Res.)Le,.,(43(2),(752–759,(
doi:10.1002/2015GL067238.(

(

Data(assimila/on(systems,(normally(
separate(
“weakly)coupled)DA”)

Thanks to Travis Sluka



E X P E R I M E N T  S E T U P  W I T H  S P E E D Y /
N E M O  C O U P L E D  S Y S T E M

SPEEDY-NEMO OSSE 
Using&the&fast&SPEEDY1
NEMO&(one&year&run&takes&
only&12&hours&on&1&core)&&

•  Perfect&model&OSSE&
conducted&using&only%
atmospheric%observa2ons%

SPEEDY1NEMO&
•  T30&atmosphere&
•  2&degree&ocean&
•  Coupling&every&6&hours%

Experiment&parameters&
•  40&ensemble&members&
•  LocalizaNon:&1000km&Hz&

•  RelaxaNon&to&prior&spread:&
90%&for&ocn&60%&for&atm&

Thanks to Travis Sluka
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MidLat - NH Tropics MidLat - SH Global

S T R O N G LY  C O U P L E D  D A   
R E D U C E S  E R R O R S

(vs. weakly coupled DA)
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Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi (2016), Assimilating atmospheric observations into the 
ocean using strongly coupled ensemble data assimilation, Geophys. Res. Lett., 43, 752–759, doi:

10.1002/2015GL067238.

For example, assimilating only 
atmospheric observations leads to 
significant improvements in ocean:
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R E D U C E S  E R R O R S (vs. weakly coupled DA)

Temperature Salinity

Pacific

Atlantic

Again, assimilating only atmospheric observations:
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last 5 years of  

10-year 
experiment.



AT M O S P H E R I C  S U R FA C E  VA R I A B L E S  
I M P R O V E D  D U E  T O  M O D E L  F E E D B A C K S

ATM$T$ ATM$q$

ATM$U$

Error reduction due to strong coupling vs. weak 
coupling is reflected in atmosphere as well



F U T U R E  T R E N D S  I N  O C E A N  D A

• DA solutions that maintain balance between ocean and external forcing via 
coupled analyses (and improve fluxes that ultimately drive the forecast in the 
short-term) 

• Higher resolution models and effectively lower resolution ‘top-heavy’ 
observing networks 

• Incorporation of new and underutilized observation types (e.g. satellite 
gravity field data, in situ drifters/floats/gliders, surface winds, observed fluxes) 

• Incorporation of biogeochemistry into ocean DA 

• Neural network / machine learning pre- and post-processing within the DA 
cycling, and bias-correcting observations and model forecasts 

• New DA methods to explicitly analyze multiple spatial and temporal scales



G E N E R A L  N E E D S  F R O M  O C E A N  
O B S E R VAT I O N S  T O  S U P P O R T  D A

• Ideal Goal: maintain comparative resolution between feasible operational 
model resolutions and global observing system resolution 

• Increased in situ observation coverage, including beneath sea ice, deep 
ocean currents, active dynamical regions like western boundary currents, 
southern ocean 

• Redundant observing network design to calibrate and bias-correct 
measurements globally, improve agreement between different sources of 
measurements, and estimate errors of these measurements 

• Improved observing of air-sea interface (fluxes), as well as SeaIce-ocean, 
land-ocean, biogeochemical fluxes, etc. to help isolate model biases 

• Co-located observations and observation-based estimates of cross-
covariance relationships across domain boundaries (e.g. air-sea)



I N  C O N C L U S I O N

• Future advancements in ocean DA can be accelerated 
by active collaboration between observing, modeling, 
and DA communities 

• Viable ocean model resolution is increasing faster than 
observing system resolution, which creates new 
challenges and requires:  
(1) new DA approaches (like coupled DA) and  
(2) more non-traditional observations to be included in 
ocean DA

Steve.Penny@noaa.gov 


