Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

New York City experiencing fast sea level rise

pelham20bay_the20bronx

Pelham Bay, January 2014. (Credit: Francisco Daum via a CC license)
A study published in The Holocene concluded that low-lying areas of New York City will experience higher relative sea level rise than the global average, and that the current rate of sea level rise in New York is the fastest it has ever been in 1500 years. 
Researchers used salt-marsh from the Pelham Bay in The Bronx to study the risk of relative sea level rise in New York City.
The study was supported by the CPO Climate Variability and Predictability program.

Abstract

New York City (NYC) is threatened by 21st-century relative sea-level (RSL) rise because it will experience a trend that exceeds the global mean and has high concentrations of low-lying infrastructure and socioeconomic activity. To provide a long-term context for anticipated trends, we reconstructed RSL change during the past ~1500 years using a core of salt-marsh sediment from Pelham Bay in The Bronx. Foraminifera and bulk-sediment δ13C values were used as sea-level indicators. The history of sediment accumulation was established by radiocarbon dating and recognition of pollution and land-use trends of known age in down-core elemental, isotopic, and pollen profiles. The reconstruction was generated within a Bayesian hierarchical model to accommodate multiple proxies and to provide a unified statistical framework for quantifying uncertainty. We show that RSL in NYC rose by ~1.70 m since ~575 CE (including ~0.38 m since 1850 CE). The rate of RSL rise increased markedly at 1812–1913 CE from ~1.0 to ~2.5 mm/yr, which coincides with other reconstructions along the US Atlantic coast. We investigated the possible influence of tidal-range change in Long Island Sound on our reconstruction using a regional tidal model, and we demonstrate that this effect was likely small. However, future tidal-range change could exacerbate the impacts of RSL rise in communities bordering Long Island Sound. The current rate of RSL rise is the fastest that NYC has experienced for >1500 years, and its ongoing acceleration suggests that projections of 21st-century local RSL rise will be realized.

More News

Scroll to Top