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rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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FIG. 11. Spatial patterns of simulated response to an increase in the AMOC induced by NAO-related surface heat flux anomalies. The
responses are averaged over JAS. Results are shown from simulations with (a)–(e) 20- and (f)–(j) 100-yr NAO forcing. Values plotted are
regression coefficients of the various fields vs the time series of the heat flux forcing; these are normalized to represent the response to
a two-standard-deviation change in the NAO-induced fluxes. Results in (a)–(e) are shown for a 20-yr time scale of flux forcing, showing
fields 7 years after maximum of imposed NAO flux forcing. Results in (f)–(j) are shown for a 100-yr time scale of flux forcing, plotted 13
years after maximum of imposedNAOflux forcing. The vertical shear of the zonal wind in (e),(j) is calculated as the zonal wind at 250 hPa
minus the zonal wind at 850 hPa.
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coefficients between the AMV index and SST are positive

almost over the entire North Atlantic (Fig. 1b, Sutton and
Hodson 2005). The region with largest positive regression

is located in the mid-latitude (30!N–60!N) and eastern

tropical North Atlantic, while the weaker regression values
are in the western tropical and subtropical North Atlantic.

The simulated AMV indices in the ten models are cal-

culated using the same definition as for observations. In all
models, SST averaged over the North Atlantic (for the

same region as the index) is colder than observed

(Table 2). Except for INMCM4, the models simulate
weaker AMV than observed during the instrumental period

(Table 2). These differences could result from the external

forcing that is fixed to preindustrial conditions in the most
control simulations.

The corresponding power spectra of the simulated AMV

indices show a wide range of variability, but exhibit a
similar red noise character (Fig. 2). Most AMV indices

show power on multi-decadal time scales, but with dif-

ferent periodicity. The spatial patterns of SST variation

associated with the AMV index in the ten models are

illustrated in Fig. 3. The regression patterns show simi-
larities with the observations in most models, with the

largest loadings in the mid-latitude region and weaker

regression in the western tropical and subtropical North
Atlantic. However, the regression values are higher than in

observations. Except for CNRM-CM3, KCM and IPSL-

CM4, the regressions in the eastern tropical and subtropical
region are weaker than mid-latitude region. The INM-CM4

has the weakest regression over the North Atlantic. Had-

CM3 shows the strongest negative regression over the
Arctic region and MIROC shows the strongest negative

regression values in the Greenland-Iceland-Norwegian

(GIN) Sea region. In addition to model error, differences in
patterns could also be related to observational uncertainties

as well as the absence of time varying external forcing in

our simulations.

Fig. 1 a Observed Atlantic
multidecadal variability (AMV)
Index defined as linearly
detrended North Atlantic
(0–60!N) average sea surface
temperature (SST). b The
spatial pattern of observed SST
variation over North Atlantic
associated with the observed
AMV Index by regressing the
detrended SST on the
normalized AMV index

Table 2 Mean SST averaged over the North Atlantic (0!–60!N,
7.5!–75!W) and the standard deviation of the AMV indices in
observation and ten CGCMs

Observation/model Mean (!C) Standard deviation (!C)

Observation 21.08 0.26

BCM 18.34 0.12

MPI-ESM-CR 20.96 0.17

EC-EARTH 19.90 0.14

IPSL-CM4 19.31 0.21

KCM 18.60 0.18

HadCM3 20.48 0.21

CNRM-CM3 19.93 0.20

CMCC 19.61 0.14

MIROC 19.14 0.15

INM-CM4 18.78 0.36

Fig. 2 The spectra of detrended AMV Indices in ten coupled general
circulation models (CGCMs). The AR1 red noise fit is the mean of the
AR1 red noise fits from ten models. Due to the varying autocorre-
lation for the models, the individual red-noise spectra are not shown
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can also probe this relationship by imposing NAO-
related fluxes with well-defined time scales and assess-
ing how the AMOC responds to differing time scales of
forcing. Specifically, we create time series of anomalous
fluxes that have the spatial pattern of the NAO but
whose amplitude is modulated in time by a sine wave
with arbitrary periods. We have conducted 10-member
ensembles of such experiments with CM2.1 using peri-
odicities of 2, 5, 10, 20, 50, and 100 yr and evaluated the
AMOC and climate system response to these forcings.
We show in Fig. 5 time series of the AMOC for simu-
lations with various time scales of NAO-related flux
forcing. Also shown in each panel (red curve) is the
AMOC time series that is calculated as an ensemble

average from the 10 corresponding segments of the
control simulation. The simulations with shorter time
scales of forcing are run for shorter durations. Figure 5a
shows simulations with time scales of 2 and 5 yr, in ad-
dition to the control. The NAO-induced variability of
the AMOC is quite small and is not distinguishable from
the mean of the corresponding segments of the control.
Figure 5b shows results from forcings with periodicities
of 10 and 20 yr. There is a substantial increase in the
response of the AMOC to the forcing, particularly for
the 20-yr time scale. Figure 5c shows results from forcing
at time scales of 50 and 100 yr. The AMOC fluctuates at
the time scale of the forcing, but the amplitude is similar
to that at 20 yr.

FIG. 4. Adjustment of the North Atlantic in CM2.1 to a sudden switch on of heat flux anomaly corresponding to a one-standard-
deviation increase of the NAO. (top)–(bottom) Climatological mean fields for various quantities as noted by labels at the top of each
column; rows after (top), anomalies at various times after the switch on of theNAOheat flux. The time is shown on the right, and indicates
how much time has passed since the switch on of the NAO-related heat flux forcing. The variables are listed along the top, so that each
column corresponds to one variable: (left)–(right) mixed layer depth (m), AMOC (Sv), heat transport (1013W), SST (8C), and SSS (psu).
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NAO using a station-based index (downloaded from
the NCAR–UCAR climate data guide at https://
climatedataguide.ucar.edu/climate-data/hurrell-north-
atlantic-oscillation-nao-index-station-based; the NAO
index is defined as the difference between a normalized
time series of SLP from Lisbon, Portugal, and a nor-
malized time series of SLP from Reykjavik, Iceland,
using seasonal means over December–March). We then
create 4-month averages from the ERA-Interim data
over the December–March period. We compute the
linear regression coefficients at each grid point between
the time series of the reanalysis fluxes (heat, water, and
momentum) and the NAO. In Fig. 1 we show the re-
gression map for surface heat flux anomalies, indicating

the pattern of surface heat flux change accompanying an
increase of one standard deviation in the NAO. For use
as described below, we scale the ECWMF-derived re-
gression coefficients for the flux fields by one standard
deviation of the NAO index time series. We use the flux
forcing only over the Atlantic from the equator to 828N,
including the Barents Sea and Nordic seas. We adjust
the fluxes so that their areal integral is zero. In this
manner, the imposed heat fluxes do not provide a net
heating or cooling to the system.
The coupled models normally compute air–sea fluxes

of heat, water, and momentum that depend on the gra-
dients in these quantities across the air–sea interface. In
our perturbation experiments this process continues, but

FIG. 1. Spatial pattern of the heat flux anomalies (Wm22) used as anomalous flux forcings in
the model experiments. Negative values mean a flux of heat from the ocean to the atmosphere.
(a) Fluxes derived from ERA-Interim—the mean fluxes over December–March that corre-
spond to a one-standard-deviation anomaly of the NAO. (b) Fluxes from a long control sim-
ulation of CM2.1, corresponding to a one-standard-deviation anomaly of the NAO.
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*	Ensemble	mean	response	rela4ve	to	the	control	ensemble	mean	



ü  Power	spectra	of	the	AMV	simulated	in	coupled	models	are	not	disOnguished	
from	those	simulated	in	corresponding	slab-ocean	coupled	simulaOons	(i.e.,	
stochasOcally	driven)		

pattern of variability. The fact that the slab-
ocean models have a higher correlation with the
observed pattern is likely due to the fact that
those models have a SST climatology prescribed
from observations, whereas coupled-model cli-
matologies exhibits significant SST biases, a
problem that perhaps worsens in CMIP5 as
compared to CMIP3, as evident in the correla-
tions in Table 2. The inclusion of historical cli-
mate forcings in model simulations does not
improve the pattern correlation with observa-
tions (Table 2).
It could be argued that the preindustrial sim-

ulations underestimate the magnitude of ob-
served multidecadal variability (Fig. 2C). The
inclusion of historical climate forcings does en-
hance multidecadal variability, bringing it into
better agreement with observations (Fig. 2C), al-
though it has been shown that several models
overestimate the impact of atmospheric aerosols
(18). On the other hand, a possible source of per-
sistence that is missing in climatemodels is cloud
feedbacks, particularly in the tropical Atlantic
(28). Climate models show a strong sensitivity
of low-level marine cloudiness to thermodynamic
variations of the mean state (29), whereas obser-
vations show that cloudiness covaries muchmore
strongly with low-level winds, and in ways that
would amplify the interactions discussed here
(30). Proper simulation of these feedbacks may
lead to models with enhanced low-frequency var-
iability in the Atlantic basin (31).
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Fig. 2. Power spectra of theAMO index.A 12-month
running mean has been applied to periodogram esti-
mates, and all data are detrended. Solid colored lines
are themultimodel mean spectra. Shading is between
theminimumandmaximum spectral value at each fre-
quency in themultimodel ensemble. (A) The red line
is themultimodelmean spectrumof nine slab-ocean
modelswith at least a 50-year length simulation (pink
shading),whereas the blue line is themultimodelmean
spectrum of their respective nine fully coupled model
simulations (blue shading). (B) The blue line and blue
shading are the same as in (A); the purple line is the
multimodelmean spectrum of 39 CMIP5 preindustrial
control simulations (purple shading). (C) The green line is themultimodel
meanof39CMIP5historical simulations(greenshading) for theyears1865–
2005.Theorange line is thepowerspectrumof theobservedAMO index fromERSSTv3b for theyears 1920–2014.

Fig. 3. Paired power spectra of the AMO index inmodels with at least 70 years of simulation (Table 1). (A to F) Red curves are for the slab-ocean simulations;
blue curves are for their respective coupled simulations. A 12-month smoothing has been applied to the periodogram estimates, and all data are detrended. Black
markings indicate where the variance of the blue curve is significantly different than the variance of the red curve at the 95%confidence level according to Fisher's F test.
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maximum time lag when the autocorrelation first crosses
the significance line at the 80% level (Figure 3). A close
inspection finds that the model persistence varies from 5
and up to 22 years, implying the potential for predicting
future SSTs. However, for most of models the persistence
is shorter than that of observation (the persistence of

ERSST is about 12 years). Meanwhile, the AMO persist-
ence in CMIP5 is much longer than that in CMIP3 which
shows an averaged persistence about 5 years [Medhaug and
Furevik, 2011]. Figure 4 shows the power spectrum of the
detrended annual mean AMO index. ERSST primarily has
three peaks of energy spectrum around 40 years, 25 years,

Figure 3. Autocorrelation of the AMO index in CMIP5 models (color lines) and observation (thick
black line) with lags from 0 to 35 years. The dash line indicates the 80% confidence level for the
observed AMO.

Figure 4. Power spectrum of the annual mean AMO index in CMIP5 historical simulations (color
lines) and in observation (thick black line). The time series are linear detrended but not filtered. The
dash line represents the ensemble mean of the power spectrum in all CMIP5 models. The dash gray line
denotes the 90% confidence red noise spectrum.

ZHANG AND WANG: AMO AND AMOC SIMULATIONS IN CMIP5

5776

Zhang	and	Wang	(2013)	

ü  Similarly	weak	mulOdecadal	AMV,	compared	to	obs,	is	found	in	many	CMIP3/CMIP5	
models	(Ting	et	al.	2011;	Kavvada	et	al.	2013)	

è		Why	is	the	AMV	power	in	coupled	models	weak	compared	to	observa4ons?	
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shortwave radiation at the top of the atmosphere are
shown in Fig. 7e; the variance increases by a factor of 1.5
from the 20-yr forcing to the 100-yr forcing. This positive
albedo feedback is more effective at longer time scales
as progressively more of the cryosphere is altered by the
NAO-induced AMOC changes and therefore partici-
pates in the positive feedback. We also show the time
series of average air–sea heat flux poleward of 238N in
Fig. 7f. The variance of the air–sea heat flux time series
also increases in the 100-yr forcing case relative to the
20-yr forcing case by a factor of 2. As the amount of sea
ice decreases, more open ocean is available to flux heat
more effectively from the ocean to the atmosphere;
since the sea ice extent is more powerfully impacted on
longer time scales, this air–sea heat flux term is also
stronger for longer time scales. However, this term is
somewhat limited by the total anomalous heat transport
in the ocean.
The above suggests that NAO-induced changes in

the AMOC create changes in ocean heat transport
that drive hemispheric-scale variations in surface air

temperature and sea ice. In addition, the effect becomes
much stronger at long time scales because of the greater
time integral of the ocean heat transport changes and
feedback processes associated with changes in snow
cover and sea ice.

b. Heat budget diagnostics

We next examine in Fig. 8 the changes in oceanic and
atmospheric heat transport, as well as changes in the
top-of-the-atmosphere radiation balance, generated by
the simulations with 100-yr NAO flux forcing using
CM2.1 (results from the 50-yr forcing simulations are
similar). In Fig. 8a we plot the linear regression co-
efficients of the time series of the NAO forcing with it-
self at various lags; this provides a visual perspective for
interpreting the phasing of the changes shown in
Figs. 8b,c. We show in Fig. 8b the linear regression co-
efficients of poleward oceanic heat transport at 508N
(integrated over all depths) versus the NAO flux forcing
time series at various lags (where negative lags refer to
times before a maximum of the NAO forcing). We find

FIG. 7. Time series of various quantities in model simulations driven by a periodic NAO heat flux forcing. Shown
are the results from a 20-yr time scale NAO forcing experiment (black) and a 100-yr time scale NAO forcing (red).
Each time series is the 10-member ensemblemean of the NAO forced experiment minus the corresponding control
simulation. The 20-yr (100 yr) forcing experiments are 100 (200) years in duration: (a) AMOC index (Sv),
(b) meridional ocean heat transport (1015W) at 238N, (c) surface air temperature (K) averaged over all points
poleward of 238N, (d) annual-mean sea ice thickness (cm) averaged over all points poleward of 558N, (e) annual-
mean net upward shortwave radiation at the top of the atmosphere (Wm22) averaged over all points poleward of
238N and (f) ocean–atmosphere heat flux (Wm22) averaged over all points poleward of 238N.
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2.4 Model spin-up

A 900 years long spin-up was performed using the normal

year COREv2 forcing alone. All experiments using inter-
annually varying forcing were then started from year 725

of the spin-up model integration. It takes the model several

years to adjust to changing from normal to inter-annually
varying forcing. To avoid problems associated with the

change, in the cases of using observation-based forcing (FF

and NF), the forcing cycle is repeated twice and the second
iteration is then analyzed. When stochastic forcing (SF) is

used, the first 150 years are considered as model adjust-

ment and are not analyzed.

3 Model results

In all three model experiments the main convection regions

are in the Labrador Sea and the Greenland Sea (Fig. 4a), as
expected from observations (Dickson et al. 1996; Marshall

and Schott 1999). In all model integrations variability is

present in the Labrador Sea convection. However, only the

FF model integration has variability in the Greenland Sea

convection; in both the NF and SF integration the Green-
land Sea is always convecting with no apparent variability.

It has been shown that atmospheric patterns other than the

NAO can be important for processes affecting the con-
vection in the Greenland-Iceland-Norwegian Seas (e.g.

Skeie 2000; Medhaug et al. 2012), potentially explaining

the lack of variability in Greenland Sea convection. It has
also been shown in a model study that density variability in

the Greenland-Iceland-Norwegian Sea region is important

for AMOC variability on centennial and longer timescales
(Schweckendiek and Willebrand 2005). All three model

integrations show similar patterns in the AMOC stream-

function and the barotropic streamfunction (Fig. 4b, c),
which in turn is similar to what is found in other studies

(e.g. Eden and Willebrand 2001; Griffies et al. 2009).

3.1 NAO-forced integration

With the NAO being the main source of atmospheric var-
iability over the North Atlantic, a natural question is: how

much of the ocean variability can be explained through the
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Fig. 3 a The stochastic NAO index averaged over the winter (JFM),
b the annual mean SST in the SPG region (defined as 60!W to 15!W,
48!N to 65!N), c the AMOC at 30!N, defined as the maximum annual
mean meridional overturning at 30!N and d the SPG strength, defined
as the negative mean barotropic streamfunction in the sub-polar gyre
region, from the stochastic model integration (left) along with the

wavelet analysis (right). The black lines indicate the cone of influence
of the wavelet analysis as well as the regions which are statistically
significant at the 95 % level compared to a best fit AR(1) process.
Before plotting all the time-series have been filtered with an 11 years
running mean. Prior to the calculations shown, the linear trend was
removed from the time-series

Stochastic variability 275

123

20-yr	NAO	forcing	

SPNA	
SST	

AMOC	

Wecan characterize the response at each time scale by
the standard deviation of the ensemble-mean AMOC
time series. Figure 6a shows the standard deviation of
the AMOC as a function of the time scale of the forcing.
It is clear that the response is small at short time scales of
forcing and increases until reaching a time scale close to
the characteristic internal time scale of the model
AMOC variability (;20 yr). The amplitude of the
AMOC response does not substantially vary as we fur-
ther increase the time scale of the forcing. The largest
response at a time scale of 20 yr may be indicative of a
resonant response of the system when forced at the
preferred time scale of variability. We show in Fig. 6b
the same quantity for ocean heat transport at 238N
summed over all longitudes and note very similar be-
havior (the response in the Pacific Ocean is small, so we
obtain essentially the same result if we compute ocean
heat transport only in the Atlantic Ocean).
We expect that variations in the AMOC and oceanic

heat transport may influence extratropical Northern
Hemisphere surface air temperature (NHSAT) and
Northern Hemisphere sea ice mean thickness (NHSI).
NHSAT is computed by averaging annual-mean surface

air temperature for all model points poleward of 238N,
and NHSI is calculated by averaging annual-mean sea
ice thickness poleward of 558N. We show in Figs. 6c and
6d the amplitudes of variations of NHSAT and NHSI,
respectively. We note that, as was the case with the
AMOC and heat transport, variations are small at short
time scales and increase up to 20 yr. However, in con-
trast to theAMOC, the amplitude of NHSAT andNHSI
variations continues to increase with the time scale of
the forcing, such that the amplitude of the response for
NHSI at a 100-yr forcing time scale is 2–3 times the
amplitude of the response for forcing at 20 years. Why is
there a continued increase in the amplitude of the
NHSAT and NHSI variations when the amplitudes of
the AMOC and oceanic heat transport variations are
approximately constant for time scales longer than 20
years? There are multiple contributing factors. First, the
time integral of the ocean heat transport anomalies is
important for the climate response; this time integral is
approximately 3 times larger for the 100-yr forcing than
for the 20-yr forcing, leading to a larger response. In
addition, in response to a warming of the climate system
there is reduced snow cover and sea ice, thereby leading

FIG. 5. Time series ofAMOC index (defined as themaximum streamfunction value each year
over the domain 208–658N) for various experiments using CM2.1. The red curve in each panel
shows values from the reference control simulation, calculated as the ensemble mean over
10 segments of the control simulation that correspond to the 10 ensemble members of the
perturbation experiments. (a) Black (blue) curve shows 10-member ensemble-mean AMOC
from simulations with NAO forcing at a time scale of 2 (5) yr. (b) Black (blue) curve shows
10-member ensemble-mean AMOC from simulations with NAO forcing at a time scale of 10
(20) yr. (c) Black (blue) curve shows 10-member ensemble-meanAMOC from simulations with
NAO forcing at a time scale of 50 (100) yr.
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Delworth	&	Zeng	(2015)	

ü  The	AMOC	and	surface	temperature	vary	almost	
linearly	with	the	period	of	the	imposed	NAO	heat	
flux	forcing	
*	AddiOonal	idealized	periodic	heat	flux	associated	with	NAO	
applied	over	the	NA	in	coupled	simulaOons	with	varying	Ome	
scales	

100-yr	NAO	forcing	

Mecking	et	al.	(2015)	

NAO	

ü  Linear	rela4onship	between	NAO,	AMOC,	
and	SPNA	SST	frequencies	on	>	
mul4decadal	4me	scales	
*	SyntheOc	stochasOc	NAO	forcing	(2000	yr)	applied	in	
an	ocean-only	simulaOon	

Is	Mul4decadal	NAO	Weak	in	These	Models?	

NOAA	CVP	Webinar,	Nov.	3,	2016,	W.	M.	Kim	(whokim@ucar.edu)	



ü  Inves4gate	the	the	low-frequency	North	Atlan4c	variability	(AMOC,	AMV,	NAO,	
and	etc)	using	the	CESM	large	ensemble	simula4ons	(LE)	
*	LE	shows	NAO-AMOC-AMV	link	at	work	and	the	weak	AMV	

Ø  Is	the	weak	AMV	power	in	coupled	models	due	to	weak	simulated	mul4decadal	
NAO	variability?	

ü  Data	and	method	

q  LE	(Kay	et	al.	2015):	�	1º	coupled	Earth	system	model	�	Large	ensemble	size	(35	
members)	�	Historical	(1920-2005)	+	RCP8.5	(2006-2009)	�	1800-long	PI	control	
simulaOon	

q  Compared	to	observa4ons/es4mates	(for	AMOC)	
-	Spectral	analysis	and	distribuOons	of	moving	trends	(e.g.,	5-	and	30-yr)	

q  Focus	on	“internal	variability”		
-	Forced	signals	of	some	variables	from	LE	are	quesOonable,	but	the	conclusions	largely	
hold	even	if	the	forced	signals	are	included	

In	this	study…	

NOAA	CVP	Webinar,	Nov.	3,	2016,	W.	M.	Kim	(whokim@ucar.edu)	



ü  Ocean-ice	hindcast	simula4on	(HC;	Yeager	&	Danabasoglu,	2014)	
•  Forced	with	CORE-II	interannual	forcing	(1948-2009;	1958-2009	analyzed)	
•  Same	ocean	and	sea-ice	components	as	in	LE	

→  we	may	expect	a	similar	low-frequency	AMOC	variability	as	in	LE	if	surface	forcing	is	same	
(Delworth	&	Greatbatch	2000)	

•  Shows	a	good	agreement	with	available	observa4ons	for	AMOC-related	variables	

We note that this central LS region is intended to match
the region with available observations and differs
slightly from the LS regions used in this study (see
below). Gelderloos et al. (2013) consider several sources
of direct MLD observations for the 1993–2009 period
and categorize LS MLDs into shallow (,1000m),
intermediate (between 1000 and 1500m), or deep
(.1500m) regimes as well as two intervening regimes
when observed MLD is within 50m of the transition
values between these three major regimes. To extend
the observational MLD estimates back in time, we
apply the same regime definitions to directly measured
MLDs at the Ocean Weather Station Bravo located in
the central LS for the 1964–74 period (568N, 518W;
Gelderloos et al. 2012).
We note that some mismatches between the modeled

and observed MLDs are expected because differing
MLD definitions used: While we use a buoyancy
gradient criterion as described in Large et al. (1997)
to determine modeled MLDs, the definitions of
MLD for the observational data used in Gelderloos
et al. (2013) vary but are essentially based on po-
tential density profiles. Figure 1 shows good quali-
tative agreement between the modeled and observed
MLDs. Specifically, for the later period, CTRL re-
produces the observed regime shift from a deep
convection phase in the early-to-mid 1990s to a
shallower intermediate phase during the late 1990s
and mid-2000s, followed by the resumed deep con-
vection in 2008. In addition, CTRL successfully simu-
lates the observed abrupt return of deep convection in
the 1972–74 winters from suppressed convection for
the 1969–71 winters. These agreements give us confi-
dence that the hindcast simulations can indeed be used
to explore the origins of the deep convection event in
the 2008 winter.

We augment CTRL by several sensitivity experi-
ments, summarized in Table 1, to identify both the
dominant contributors from among the various at-
mospheric forcing fields and the role of oceanic
preconditioning to the 2008 deep convection event.
The atmospheric forcing impact is decomposed in
terms of flux components and frequency band (i.e.,
synoptic vs longer frequency). We isolate the most
important processes by integrating the model with
various combinations of atmospheric forcing vari-
ables and initial conditions of the 2007 and 2008
winters. We note that the purpose of the sensitivity
experiments in which different forcing variables
from the two winters are combined is to heuristically
identify the most important atmospheric variable
responsible for the deep convection in the 2008
winter, and not to rigorously quantify their rela-
tive contributions. The details of the experimental
setups for these sensitivity experiments are given
in section 3c, together with results from these
experiments.

3. A case study of the 2007 and 2008 winters

a. Atmospheric conditions

We first show, in Fig. 2, the daily time series of the
CORE-II-derived and OAFlux turbulent heat fluxes,
and near-surface (10m) air temperature (SAT), zonal
andmeridional winds, and wind speed fromCORE-II and
ASR (except for zonal and meridional winds) for the
winters of 2007 and 2008. All time series are averages over
the central LS region defined by 568–628N and 598–468W
(boxed region in Fig. 3b). The mean, variance, and cor-
relation values discussed below are based on the CORE-
II-derived data, but similar values are obtained for other
products.
The turbulent heat fluxes (positive upward; i.e., heat

losses from the ocean) in the LS agree remarkably well
between the CORE-II-derived product andOAFlux. As
discussed earlier, greater winter-mean (December through
March) heat release from the ocean in the 2008 winter
than in the 2007 winter (241 vs 173Wm22) is accompa-
nied by much colder 2008 winter-mean SAT (26.08
vs 21.28C). The daily variability of these fluxes is pri-
marily dictated also by SAT in bothwinters with turbulent
heat flux–SAT correlation coefficients of20.87 and20.74
for the winters of 2007 and 2008, respectively (.99%
confidence level for both winters). If the colder average
SAT in the 2008 winter is due to a direct influence of
storms, one would expect a stronger wind variance in this
winter compared to that of 2007. However, y02 in the 2008
winter is only about one-half of that in the 2007winter (6.4

FIG. 1. Time series of March-mean MLD from CTRL, averaged
over a central LS region (568–608N, 568–488W). The gray-shaded
areas represent the LS convection regimes categorized by
Gelderloos et al. (2013) based on several sources of direct MLD
observations (see text).
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Kim	et	al.	(2016)	

Simulated	MLD	

Es4mated	MLD	from		
Obs	(Gelderloos	et	al.	2013)	

FIG. 4. Time series of anomalous potential temperature (shading) and potential density (s2;
contoured at 0.01 kgm23; dashed lines shownegative values) within the central Labrador Sea from
(a) a compilation of hydrographic observations (Yashayaev 2007; Yashayaev andLoder 2009) and
(b) CONTROL. (c),(d) As in (a),(b), but for anomalous salinity. The anomalies are computed
relative to the 1960–2007 climatology at each depth level. CONTROL area averages were com-
puted on depth levels within the box region (568–498W, 568–618N) in the vicinity of the Atlantic
Repeat Hydrography Line 7 West (AR7W) section and include only grid cells where the ba-
thymetry exceeds 3300m.Model output fromMay of each year is used to reflect the spring timing
of hydrographic measurements, although the difference from annual-mean output is small.
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Yeager	&	Danabasoglu	(2014)	

1970	 1990	

Lab.	Sea	Temperature	

Obs	(Yashayaev	2007)	

HC	

AMOC	Es4mates	
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19	CORE-II	Hindcast	simula4ons	

then averaging these ensemble means. Because some sys-

tems provide hindcasts starting every year, while others
provided hindcasts every 5 years, two distinct multi-model

hindcast sets are made from different ensembles depending

on the start date.
The hindcasts are also compared against persistence

predictions. The persistence prediction for the n year

forecast period is taken as the AMOC averaged over the n
years immediately preceding the forecast start date.

4 Results

We compare the AMOC variability over the second half of

the 20th century from 10 different European decadal pre-

diction systems, including those from the MOHC, IFM-
GEOMAR, MPI, ECMWF, CERFACS and CMCC-INGV

(see Table 1). The maximum of the AMOC averaged over

the ocean syntheses from these 10 systems and the period
1959–2006 occurs at about 1,000 m depth and between

30!N and 45!N. We focus first on the AMOC at 45!N,

since we found the largest similarity in the long-term signal
around this latitude. As in previous studies (e.g. Cunning-

ham and Marsh 2010; Munoz et al. 2011) large differences

in the magnitude of the AMOC are present between the
different systems at 45!N (Fig. 2a) with values between

12.1 Sv for Had and 22.6 Sv for ECMWF averaged over

the period 1960–2001. However, the multi-system mean
AMOC strength (of 16.6 Sv at 45!N and 19.3 Sv at 30!N,

respectively in 2004) lies in the estimated range from

observations, e.g. of 18.7 ± 5.6 Sv at 26!N between 2004
and 2005 from the RAPID array (Cunningham et al.

2007) or of 15.5 ± 2.4 Sv at 41!N between 2004 and 2006

(Willis 2010).
The disagreement between the syntheses (Fig. 2a) is not

surprising considering that the model resolution, the

assimilation technique, and flux adjustments all potentially
affect the magnitude of the AMOC. However, the vari-

ability of the AMOC anomalies does show a consistent

signal. This is seen by normalizing the AMOC time series
to have the same mean and variance (Fig. 2b), revealing an

increase in the AMOC from 1960 to the mid 1990s and a

decrease thereafter. The linear trend over the period
1959–1995 is 1.6 standard deviations and is significantly

different to no trend above the 99 % level according to a

Mann–Kendall test (e. g. Yue et al. 2002). Additionally, all
individual syntheses show a positive trend (for the years

available, see Table 1) during this period, although the

trends are statistically significant above the 70 % level in
only 7 out of 10 individual systems. The linear trend over

the period 1995–2006 is -2.5 standard deviations and is

significantly different to no trend above the 99 % level
using a Mann–Kendall test. Additionally, all individual

syntheses show a negative trend (for the years available)

during this period, but statistically significant above the 70
% level in only 9 out of 10 systems.

The fact that these different syntheses suggest a com-

mon signal of AMOC variability is important because it
shows that the available observations produce a common

response when analyzed by a wide variety of models and

synthesis techniques (Table 1) but a crucial question is
whether the model signal is reliable? A direct comparison

of this AMOC variability to observations is not possible

due to the lack of direct observations. However, time series
of key variables which are thought to be related to the

AMOC (e.g., Latif et al. 2006; Curry et al. 1998; Häkkinen

and Rhines 2004; Lohmann et al. 2009) do exist, including
the North Atlantic Oscillation (NAO) (Hurrell 1995),

Labrador Sea (LS) convection (Kieke et al. 2006), Atlantic

SST dipole index (Latif et al. 2006) and subpolar gyre
(SPG) strength (Dibarboure et al. 2004). Model studies

show that these are strongly related to AMOC variations

(Latif et al. 2006; Curry et al. 1998; Häkkinen and Rhines
2004; Lohmann et al. 2009). We find considerable
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Fig. 2 a Time series of AMOC at 45!N and 1,000 m depth from the
syntheses of 10 decadal prediction systems (see Table 1) and b their
values after normalization to have the same mean and variance. The
black thick curve in b shows the multi-model mean, the black thin
curve is their linear trend for the periods 1959–1995 and 1995–2006,
and the grey shading the 5–95 % ensemble range of the syntheses.
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Fig. 15. Low-pass filtered, MMM time series of (top) AMOC maximum transport at

45°N, March-mean MLD, and SPG BSF; and (bottom) AMOC maximum transport at

45°N (same as in the top panel), AMOC maximum transport at 26.5°N, and SPG SSH.

The top panel also includes low-pass filtered NAO time series whose amplitude is

multiplied by a factor of two for clarity. MLD is calculated as an average for the LS –

Irminger Sea region defined as the area between 15◦–60◦W and 48◦–60◦N. The SPG BSF

and SSH represent averages for the SPG region defined by 15◦–60◦W and 48◦–65◦N. We

note that negative SPG BSF and SSH anomalies indicate strengthening of the cyclonic

SPG circulation. All time series are anomalies with respect to the 1958–2007 period.

A 7-year cutoff is used for the low-pass filter. The respective colored shadings denote

one standard deviation spread of the models’ time series from those of the respective

MMM. The spread for the AMOC transport at 45°N is not repeated in the bottom panel

for clarity. MMM does not include MRI-A. Units are Sv for AMOC and BSF; × 100 m for

MLD; and cm for SSH.

average for the LS – Irminger Sea region defined as the area between
15◦–60◦W and 48◦–60◦N, thus including the region extending from
the southeast LS to the Irminger Sea which contains the largest MLD
variability in the majority of the models (see Fig. 9). The SPG BSF and
SSH represent average transport and surface height for the SPG do-
main defined in Section 7. For NAO, we adopt the winter (December–
March) sea level pressure PC1 time series from the CORE-II data sets
as our index. The NAO index shows a stronger-than-normal subtropi-
cal high and a deeper-than-normal Icelandic low in its positive phase
(NAO+). We note that all models are subject to the same NAO index
because it is part of the forcing datasets. All time series are anoma-
lies with respect to the 1958–2007 period, and shadings denote one
standard deviation spreads of the models’ time series from those of
the respective MMM.

The figure shows several noteworthy features. First, changes in
MLD tend to lead changes in AMOC. This is particularly evident after
1980: deepening in MLD leads AMOC intensification by a few years
with the deepest MLDs and the largest AMOC transports occurring
in 1992–1993 and 1995, respectively. Second, the NAO time series
similarly lead those of AMOC, with changes in NAO and MLD tend-
ing to co-vary. There is a suggestion that NAO slightly leads MLD after
about 1990. Third, AMOC and SPG BSF and SSH anomalies appear to
be largely in-phase, noting that the negative BSF and SSH anomalies
indicate strengthening of the cyclonic SPG circulation. However, the
SPG SSH time series suggest that they tend to lead those of AMOC
by a few years. In Yeager (2015), these co-variations of AMOC and
SPG anomalies are shown to be associated with the bottom pressure
torque which emerges as the primary driver in the barotropic vor-
ticity equation responsible for decadal, buoyancy-forced changes in

the gyre circulation, thus providing AMOC and SPG coupling. Finally,
we note that the two AMOC time series do not show an appreciable
lead–lag relationship until about 1985. Thereafter, anomalies at 45°N
lead those at 26.5°N by about 5 years. A prominent example is the
emergence and strengthening of positive AMOC anomalies at 26.5°N
during the 1989–2000 period which follow a similar AMOC intensifi-
cation at 45°N that occurs during the 1984–1995 period.

To establish the lead–lag relationships between the AMOC index
time series and those of the MLD, SPG BSF, SPG SSH, and NAO, we
next calculate the correlation functions among these time series. The
resulting lead–lag correlations for each model are shown in Fig. 16
where the AMOC index leads for positive lags. The correlations are
obtained using the low-pass filtered anomalies with respect to the
1958–2007 period. The figure also includes the MMM correlation
function evaluated as the mean of the individual model correlations
as well as 95% confidence levels calculated using a parametric boot-
strap method (see Section 2 for details). As above, MLD and BSF time
series are evaluated as spatial averages for their respective regions,
and SSH spatial averages use the same domain as in BSF.

We first summarize our analysis considering the MMM correla-
tions shown as the black lines in Fig. 16. The maximum correlations
(≈ 0.75) occur when positive MLD anomalies, i.e., MLD deepening,
lead AMOC intensification by 2–3 years. As also suggested by Fig. 15,
the correlation coefficient between the AMOC index and the SPG BSF
time series is a maximum (≈ |0.7|) at lag of −1 to −2, again noting
that the negative correlations indicate in-phase strengthening and
weakening of AMOC and SPG. We see a similar relationship between
the AMOC index and the SPG SSH time series with the largest nega-
tive correlations of about 0.6 occurring when SSH leads by 2–3 years.
These lead–lag relationships between the AMOC index time series
and those of SPG BSF and SSH along with the time series plots of
Fig. 15 support the idea of monitoring the variations in the LS SSH as
a proxy for AMOC changes as suggested by Yeager and Danabasoglu
(2014). Lastly, we note that the NAO index leads the AMOC index by
2–4 years with a maximum correlation coefficient of about 0.6.

There are many differences among the individual correlation func-
tions, for example, in their correlation coefficient magnitudes as well
as in their lead–lag times for maximum correlations. We discuss only
a few of these differences here both to provide some examples of such
differences and to identify some models that depart from our MMM
characterization. Starting with the AMOC and MLD correlation func-
tions, we note that although INMOM also shows relatively strong cor-
relations when MLD leads AMOC, it is the only model which has its
maximum correlation when AMOC leads, indicating that MLDs con-
tinue to get deeper while AMOC begins to weaken. The maximum
correlations vary between about 0.45 and 0.9 among the models, with
ICTP at the low end and AWI, BERGEN, CNRM, INMOM, KIEL, MRI-
F, and NCAR at the high end of this range. The low correlations in
ICTP that are not statistically significant are likely due to low MLD
variability in the LS – Irminger Sea region (Fig. 9) where the time-
mean MLDs always remain very deep and the largest variabilities oc-
cur in the southern portion. In contrast with the rest of the models,
GFDL-GOLD, GISS, MRI-A, and NOCS show earlier transitions to nega-
tive correlations starting at lag of 0. Consequently, these models have
the largest negative correlation coefficients among the models. Al-
though there does not seem to exist any clear relationships between
the AMOC–MLD correlations and where the deepest MLDs occur in
the models, we note that in MRI-A and NOCS – two of the models with
earlier transitions to negative correlations – AMOC EOF1 anomalies
are very weak at 45°N, indeed negative as shown in Fig. 4. Continu-
ing with the AMOC and SPG BSF correlation functions, we find GISS2
and, to some degree, FSU distributions – both below the confidence
levels – difficult to interpret due to their pronounced oscillatory be-
havior with relatively small correlation coefficients. In BERGEN, IN-
MOM, and NCAR, the extrema in SPG transports are attained more
than 2 years after the extrema in AMOC. Not surprisingly, there are

Danabasoglu	et	al.	2016	

Pohlmann	et	al.	2013	

Ocean	Reanalysis	

AMOC	
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then averaging these ensemble means. Because some sys-

tems provide hindcasts starting every year, while others
provided hindcasts every 5 years, two distinct multi-model

hindcast sets are made from different ensembles depending

on the start date.
The hindcasts are also compared against persistence

predictions. The persistence prediction for the n year

forecast period is taken as the AMOC averaged over the n
years immediately preceding the forecast start date.

4 Results

We compare the AMOC variability over the second half of

the 20th century from 10 different European decadal pre-

diction systems, including those from the MOHC, IFM-
GEOMAR, MPI, ECMWF, CERFACS and CMCC-INGV

(see Table 1). The maximum of the AMOC averaged over

the ocean syntheses from these 10 systems and the period
1959–2006 occurs at about 1,000 m depth and between

30!N and 45!N. We focus first on the AMOC at 45!N,

since we found the largest similarity in the long-term signal
around this latitude. As in previous studies (e.g. Cunning-

ham and Marsh 2010; Munoz et al. 2011) large differences

in the magnitude of the AMOC are present between the
different systems at 45!N (Fig. 2a) with values between

12.1 Sv for Had and 22.6 Sv for ECMWF averaged over

the period 1960–2001. However, the multi-system mean
AMOC strength (of 16.6 Sv at 45!N and 19.3 Sv at 30!N,

respectively in 2004) lies in the estimated range from

observations, e.g. of 18.7 ± 5.6 Sv at 26!N between 2004
and 2005 from the RAPID array (Cunningham et al.

2007) or of 15.5 ± 2.4 Sv at 41!N between 2004 and 2006

(Willis 2010).
The disagreement between the syntheses (Fig. 2a) is not

surprising considering that the model resolution, the

assimilation technique, and flux adjustments all potentially
affect the magnitude of the AMOC. However, the vari-

ability of the AMOC anomalies does show a consistent

signal. This is seen by normalizing the AMOC time series
to have the same mean and variance (Fig. 2b), revealing an

increase in the AMOC from 1960 to the mid 1990s and a

decrease thereafter. The linear trend over the period
1959–1995 is 1.6 standard deviations and is significantly

different to no trend above the 99 % level according to a

Mann–Kendall test (e. g. Yue et al. 2002). Additionally, all
individual syntheses show a positive trend (for the years

available, see Table 1) during this period, although the

trends are statistically significant above the 70 % level in
only 7 out of 10 individual systems. The linear trend over

the period 1995–2006 is -2.5 standard deviations and is

significantly different to no trend above the 99 % level
using a Mann–Kendall test. Additionally, all individual

syntheses show a negative trend (for the years available)

during this period, but statistically significant above the 70
% level in only 9 out of 10 systems.

The fact that these different syntheses suggest a com-

mon signal of AMOC variability is important because it
shows that the available observations produce a common

response when analyzed by a wide variety of models and

synthesis techniques (Table 1) but a crucial question is
whether the model signal is reliable? A direct comparison

of this AMOC variability to observations is not possible

due to the lack of direct observations. However, time series
of key variables which are thought to be related to the

AMOC (e.g., Latif et al. 2006; Curry et al. 1998; Häkkinen

and Rhines 2004; Lohmann et al. 2009) do exist, including
the North Atlantic Oscillation (NAO) (Hurrell 1995),

Labrador Sea (LS) convection (Kieke et al. 2006), Atlantic

SST dipole index (Latif et al. 2006) and subpolar gyre
(SPG) strength (Dibarboure et al. 2004). Model studies

show that these are strongly related to AMOC variations

(Latif et al. 2006; Curry et al. 1998; Häkkinen and Rhines
2004; Lohmann et al. 2009). We find considerable
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Fig. 2 a Time series of AMOC at 45!N and 1,000 m depth from the
syntheses of 10 decadal prediction systems (see Table 1) and b their
values after normalization to have the same mean and variance. The
black thick curve in b shows the multi-model mean, the black thin
curve is their linear trend for the periods 1959–1995 and 1995–2006,
and the grey shading the 5–95 % ensemble range of the syntheses.
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Fig. 15. Low-pass filtered, MMM time series of (top) AMOC maximum transport at

45°N, March-mean MLD, and SPG BSF; and (bottom) AMOC maximum transport at

45°N (same as in the top panel), AMOC maximum transport at 26.5°N, and SPG SSH.

The top panel also includes low-pass filtered NAO time series whose amplitude is

multiplied by a factor of two for clarity. MLD is calculated as an average for the LS –

Irminger Sea region defined as the area between 15◦–60◦W and 48◦–60◦N. The SPG BSF

and SSH represent averages for the SPG region defined by 15◦–60◦W and 48◦–65◦N. We

note that negative SPG BSF and SSH anomalies indicate strengthening of the cyclonic

SPG circulation. All time series are anomalies with respect to the 1958–2007 period.

A 7-year cutoff is used for the low-pass filter. The respective colored shadings denote

one standard deviation spread of the models’ time series from those of the respective

MMM. The spread for the AMOC transport at 45°N is not repeated in the bottom panel

for clarity. MMM does not include MRI-A. Units are Sv for AMOC and BSF; × 100 m for

MLD; and cm for SSH.

average for the LS – Irminger Sea region defined as the area between
15◦–60◦W and 48◦–60◦N, thus including the region extending from
the southeast LS to the Irminger Sea which contains the largest MLD
variability in the majority of the models (see Fig. 9). The SPG BSF and
SSH represent average transport and surface height for the SPG do-
main defined in Section 7. For NAO, we adopt the winter (December–
March) sea level pressure PC1 time series from the CORE-II data sets
as our index. The NAO index shows a stronger-than-normal subtropi-
cal high and a deeper-than-normal Icelandic low in its positive phase
(NAO+). We note that all models are subject to the same NAO index
because it is part of the forcing datasets. All time series are anoma-
lies with respect to the 1958–2007 period, and shadings denote one
standard deviation spreads of the models’ time series from those of
the respective MMM.

The figure shows several noteworthy features. First, changes in
MLD tend to lead changes in AMOC. This is particularly evident after
1980: deepening in MLD leads AMOC intensification by a few years
with the deepest MLDs and the largest AMOC transports occurring
in 1992–1993 and 1995, respectively. Second, the NAO time series
similarly lead those of AMOC, with changes in NAO and MLD tend-
ing to co-vary. There is a suggestion that NAO slightly leads MLD after
about 1990. Third, AMOC and SPG BSF and SSH anomalies appear to
be largely in-phase, noting that the negative BSF and SSH anomalies
indicate strengthening of the cyclonic SPG circulation. However, the
SPG SSH time series suggest that they tend to lead those of AMOC
by a few years. In Yeager (2015), these co-variations of AMOC and
SPG anomalies are shown to be associated with the bottom pressure
torque which emerges as the primary driver in the barotropic vor-
ticity equation responsible for decadal, buoyancy-forced changes in

the gyre circulation, thus providing AMOC and SPG coupling. Finally,
we note that the two AMOC time series do not show an appreciable
lead–lag relationship until about 1985. Thereafter, anomalies at 45°N
lead those at 26.5°N by about 5 years. A prominent example is the
emergence and strengthening of positive AMOC anomalies at 26.5°N
during the 1989–2000 period which follow a similar AMOC intensifi-
cation at 45°N that occurs during the 1984–1995 period.

To establish the lead–lag relationships between the AMOC index
time series and those of the MLD, SPG BSF, SPG SSH, and NAO, we
next calculate the correlation functions among these time series. The
resulting lead–lag correlations for each model are shown in Fig. 16
where the AMOC index leads for positive lags. The correlations are
obtained using the low-pass filtered anomalies with respect to the
1958–2007 period. The figure also includes the MMM correlation
function evaluated as the mean of the individual model correlations
as well as 95% confidence levels calculated using a parametric boot-
strap method (see Section 2 for details). As above, MLD and BSF time
series are evaluated as spatial averages for their respective regions,
and SSH spatial averages use the same domain as in BSF.

We first summarize our analysis considering the MMM correla-
tions shown as the black lines in Fig. 16. The maximum correlations
(≈ 0.75) occur when positive MLD anomalies, i.e., MLD deepening,
lead AMOC intensification by 2–3 years. As also suggested by Fig. 15,
the correlation coefficient between the AMOC index and the SPG BSF
time series is a maximum (≈ |0.7|) at lag of −1 to −2, again noting
that the negative correlations indicate in-phase strengthening and
weakening of AMOC and SPG. We see a similar relationship between
the AMOC index and the SPG SSH time series with the largest nega-
tive correlations of about 0.6 occurring when SSH leads by 2–3 years.
These lead–lag relationships between the AMOC index time series
and those of SPG BSF and SSH along with the time series plots of
Fig. 15 support the idea of monitoring the variations in the LS SSH as
a proxy for AMOC changes as suggested by Yeager and Danabasoglu
(2014). Lastly, we note that the NAO index leads the AMOC index by
2–4 years with a maximum correlation coefficient of about 0.6.

There are many differences among the individual correlation func-
tions, for example, in their correlation coefficient magnitudes as well
as in their lead–lag times for maximum correlations. We discuss only
a few of these differences here both to provide some examples of such
differences and to identify some models that depart from our MMM
characterization. Starting with the AMOC and MLD correlation func-
tions, we note that although INMOM also shows relatively strong cor-
relations when MLD leads AMOC, it is the only model which has its
maximum correlation when AMOC leads, indicating that MLDs con-
tinue to get deeper while AMOC begins to weaken. The maximum
correlations vary between about 0.45 and 0.9 among the models, with
ICTP at the low end and AWI, BERGEN, CNRM, INMOM, KIEL, MRI-
F, and NCAR at the high end of this range. The low correlations in
ICTP that are not statistically significant are likely due to low MLD
variability in the LS – Irminger Sea region (Fig. 9) where the time-
mean MLDs always remain very deep and the largest variabilities oc-
cur in the southern portion. In contrast with the rest of the models,
GFDL-GOLD, GISS, MRI-A, and NOCS show earlier transitions to nega-
tive correlations starting at lag of 0. Consequently, these models have
the largest negative correlation coefficients among the models. Al-
though there does not seem to exist any clear relationships between
the AMOC–MLD correlations and where the deepest MLDs occur in
the models, we note that in MRI-A and NOCS – two of the models with
earlier transitions to negative correlations – AMOC EOF1 anomalies
are very weak at 45°N, indeed negative as shown in Fig. 4. Continu-
ing with the AMOC and SPG BSF correlation functions, we find GISS2
and, to some degree, FSU distributions – both below the confidence
levels – difficult to interpret due to their pronounced oscillatory be-
havior with relatively small correlation coefficients. In BERGEN, IN-
MOM, and NCAR, the extrema in SPG transports are attained more
than 2 years after the extrema in AMOC. Not surprisingly, there are
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(c)

Sahel	Rainfall	

50 20 10 5

100

101

102
(a) Raw

Period [yr]

Va
ria

nc
e

 

 
LE Spread
LE mean
Obs (1921−2009)
Obs (1864−2015)

50 20 10 5

(b) Ensemble Mean Removed

Period [yr]

NAO	

50 20 10 5

100

101

102
(a) Raw

Period [yr]

Va
ria

nc
e

 

 
LE Spread
LE mean
Obs (1921−2009)
Obs (1864−2015)

50 20 10 5

(b) Ensemble Mean Removed

Period [yr]

50 20 10 5

10−2

10−1

100

101

(a) Raw

Period [yr]

Va
ria

nc
e

 

 
LE Spread
LE mean
Obs (1921−2009)
Obs (1820−2015)

50 20 10 5

(b) Ensemble Mean Removed

Period [yr]
50 20 10 5

10−1

100

101

102
(a) Raw

Period [yr]

Va
ria

nc
e

 

 
LE Spread
LE mean
HC

50 20 10 5

(b) Ensemble Mean Removed

Period [yr]

AMOC	

Dashed:	Ensemble-mean	of	
LE	removed	from	HC	
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*	All	trends	are	normalized	
to	the	corresponding	max	
trend	of	either	obs	or	
esOmates	
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Weak	mul4decadal	North	Atlan4c	Variability	in	LE	
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rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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Simulated	NAO	in	LE	reveals	weak	mul4decadal	
variability,	compared	to	obs,	which	propagates	to	other	
variables	through	the	link	
è	Why	the	simulated	mul4decadal	NAO	is	weak?	
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Is	the	observed	NAO	is	a	part	of	white	noise	and	the	ensemble	size	of	LE	is	too	small?	
-  Not	likely	(Feldstein	2000)		

→	Other	factors	(e.g.,	air-sea	&	troposphere-stratosphere	coupling)	seem	to	be	necessary	

Power	spectra	and	30-yr	moving	trends	of		
89	yr	x	10,000	synthe4c	white	noise	4me	series		

Some	Remarks	on	the	Mul4decadal	NAO	

NOAA	CVP	Webinar,	Nov.	3,	2016,	W.	M.	Kim	(whokim@ucar.edu)	
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TOGA	AMIP	w/	CAM5	
(1880	–	2014)	

*	Only	tropical	SST	is	Ome-varying	
	
	
	
	
	
	
	

AMIP	w/	“high-top”	CAM5	
(1952–2002)		

Richter	et	al.	(2015)	
*	Time-varying	SST	everywhere	

Some	Remarks	on	the	Mul4decadal	NAO	

NOAA	CVP	Webinar,	Nov.	3,	2016,	W.	M.	Kim	(whokim@ucar.edu)	

ü  Resolving	stratosphere	may	be	the	key	in	simula4on	mul4decadal	NAO	variability	



ü  The	mul4decadal	North	Atlan4c	variability	in	LE	is	weak	compared	to	obs	

•  We	claim	that	this	is	ulOmately	due	to	weak	mul4decadal	NAO	in	LE	through	NAO	→	
AMOC	→	AMV	link	

•  The	weak	mulOdecadal	NAO	in	LE	is	consistent	with	the	recent	analysis	by	Kravtosv	&	
CallicuT	(2016,	submiied)	using	CMIP5	models		

•  Other	factors	than	intrinsic	atmospheric	processes	seem	to	play	a	role	for	the	
mulOdecadal	NAO	(stratosphere-troposphere	coupling?)	

•  MulOdecadal	variability	seems	to	be	under-sampled	in	coupled	models,	thus	care	
should	be	taken	when	mulOdecadal	variability	is	examined	
*	Interannual	to	decadal	variability	in	LE	agrees	reasonably	with	observed	one	

•  Low-frequency	AMOC	variability	can	be	driven	by	other	mechanisms	than	NAO	heat	
flux	
è	Evidence	from	many	observa4onal	and	modeling	studies	indicates	that	the	NAO	heat	flux	
drives	the	AMOC,	at	least,	during	the	second	half	of	the	20th	century	

Summary/Discussion	

NOAA	CVP	Webinar,	Nov.	3,	2016,	W.	M.	Kim	(whokim@ucar.edu)	


