The Scientific Basis for Common Modeling Infrastructure
NOAA/CPO MAPP Seminar

V. Balaji

NOAA/GFDL and Princeton University

31 March 2014
Multi-model ensembles for climate projection

Figure SPM.7 from the IPCC AR5 Report.
The 2012 NRC Report “A National Strategy for Advancing Climate Modeling” (Google for URL...) made several recommendations:

- **Structural uncertainty**: key issue to be addressed with common modeling experiments: maintain model diversity while using common infrastructure to narrow the points of difference.

- **Global data infrastructure** as critical infrastructure for climate science: data interoperability, common software requirements.

- “Nurture” at least one unified **weather-climate** effort: NWP methods to address climate model biases; climate runs to address drift and conservation in weather models.

- **Forum** to promote shared infrastructure: identify key scientific challenges, design common experiments, set standards for data interoperability and shared software.
Multi-model ensembles to overcome “structural uncertainty”

Reichler and Kim (2008), Fig. 1: compare models’ ability to simulate 20th century climate, over 3 generations of models.

- Models are getting better over time.
- The ensemble average is better than any individual model.
- Improvements in understanding percolate quickly across the community.
There is a close link between “genetic distance” and “phenotypic distance” across climate models (Fig. 1 from Knutti et al, GRL, 2013).
Notional architecture of an Earth System Model. Different models may embody this differently in code.
Diversity of coupling architectures

The Software Architecture of Global Climate Models

Kaitlin Alexander1,2, Steve Easterbrook2

1Department of Mathematics, University of Manitoba
2Software Engineering Lab; Department of Computer Science, University of Toronto

Introduction

It has become common to compare and contrast the output of multiple global climate models (GCMs), such as in the Climate Model Intercomparison Project Phase 5 (CMIP5). However, intercomparisons of the software architecture of GCMs are almost nonexistent. In this qualitative study of seven GCMs from Canada, the United States and Europe, we attempted to fill this gap in research. By examining the model source code, reading documentation, and interviewing developers, we created diagrams of software structure and compared metrics such as encapsulation, coupler design, and complexity.

Component-Based Software Engineering

A global climate model is really a collection of models (components), each representing a major realm of the climate system, such as the atmosphere or the land surface. They are highly encapsulated, for stand-alone use as well as a two-and-each approach that facilitates code sharing between institutions.

This strategy, known as component-based software engineering (CBSE), pools resources to create high-quality components that are used by many GCMs. For example, - IPSL uses a modified version of GFDL’s ocean model, called HadGEM3 and CESM both use CICE, a sea-ice model developed by Los Alamos.

Contrary to CBSE goals, there is no universal interface for climate model components. Without a standardized interface, components need to be modified when they are passed between institutions. Furthermore, the right to edit the master copy of a component’s source code is generally restricted to the development team at the hosting institution. As a result, many different branches of the software develop.

A drawback to CBSE is the fact that, in the real world, components of the climate system are not encapsulated. For example, how does one represent the relationship between sea ice and the ocean? Many different strategies exist:

- CESM: sea ice and ocean are completely separate components.
- IPSL: sea ice is a sub-component of the ocean.
- GFDL: sea ice is an interface to the ocean. All fluxes to and from the ocean must pass through the sea ice region, even if ice is not actually present.

Acknowledgements

Gavin Schmidt (NASA GISS), Tim Johns (Met Office), Gary Schmidt (NCAR), Arnaud Cozic (IPSL); Reinhard Budich (MPI); and Michael Eby (University of Victoria) answered questions about their work developing GCMs and helped to verify our observations. Additionally, Michael Dyk from the University of Victoria was instrumental in improving the diagram design.

This project was funded by NSERC and the Centre for Global Change Science at the University of Toronto.

The Coupling Process

Since the climate system is highly interconnected, a CBSE approach requires code to tie the components together – interpolating fluxes between grids and controlling interactions between components. These tasks are performed by the coupler. While all GCMs contain some form of coupler, the extent to which it is used widely varies:

- CESM: Every interaction is managed by the coupler.
- IPSL: Only the atmosphere and the ocean are connected to the coupler. The land components are directly called by the atmosphere.
- HadGEM3: All components are connected to the coupler, but ocean-ice fluxes are passed directly, since Model E is an ocean-centric branch of MOM, and IPSL is built to handle any number and any type of components, as well as the flux fields within.

Complexity and Focus

A simple line count of GCM source code serves as a reasonable proxy for relative complexity. A model that represents many processes will generally have a larger code base than one that represents only a few. Between models, complexity varies widely. For example, HadGEM3: atmosphere-centric, but ocean-ice fluxes are passed directly, since Model E is an ocean-centric branch of MOM, and IPSL is built to handle any number and any type of components, as well as the flux fields within.

Conclusion

While every GCM we studied shares a common basic design, a wide range of structural diversity exists in areas such as grid structure, relative complexity between components, and levels of component encapsulation. This diversity can complicate model development, particularly when components are passed between institutions. However, the range of design choices is arguably beneficial for model output. Each model’s architecture reflects the software engineering equivalent of perturbed physics (although not in a systematic manner).

Additionally, architectural differences may provide new insights into variability and spread between model results. By examining software variations, as well as scientific variations, we can better understand discrepancies in GCM output.
Physical architecture is often model-specific

![Diagram showing data flow between atmospheric, surface, land, and ocean models.]

FMS coupled architecture: fluxes down, state variables up, implicit vertical diffusion (R both and down and up).

V. Balaji (balaji@princeton.edu) Scientific Basis for Common Infrastructure 31 March 2014
Extending component parallelism to $\mathcal{O}(10)$ requires a different physical architecture!
Serial coupling

Uses a forward-backward timestep for coupling.

\[
A^{t+1} = A^t + f(O^t) \tag{1}
\]

\[
O^{t+1} = O^t + f(A^{t+1}) \tag{2}
\]

V. Balaji (balaji@princeton.edu) Scientific Basis for Common Infrastructure 31 March 2014 10 / 15
Concurrent coupling

This uses a forward-only timestep for coupling. While formally this is unconditionally unstable, the system is strongly damped*. Answers vary with respect to serial coupling, as the ocean is now forced by atmospheric state from Δt ago.

\begin{align*}
A^{t+1} &= A^t + f(O^t) \\
O^{t+1} &= O^t + f(A^t)
\end{align*}

\[P \]
\[T \]
Massively concurrent coupling

Components such as radiation, PBL, ocean biogeochemistry, each could run with its own grid, timestep, decomposition, even hardware. Coupler mediates state exchange.
Physics and radiation share memory. (Figure courtesy Rusty Benson, NOAA/GFDL).

V. Balaji (balaji@princeton.edu)
Sharing infrastructure is a hard problem, and not cost-free: should not be assumed to be just axiomatically a good idea.

Should be done with a purpose: such as **scientific reproducibility of simulations**, making the process of setting up a MIP lightweight.

Recognize the diversity of models, of coupling architectures (never say “plug and play”...!), and the value of this diversity.

Interoperability and shared infrastructure has many aspects: common experimental protocols, common analytic methods, common documentation standards for data and data provenance, shared workflow, shared model components, shared technical layers. (ESDOC, ESGF, ESMF, ...)