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Large Marine Ecosystems (LMEs)

Gulf of |«
./ Alaska |

LMEs 1: East Bering Sea (EBS), 2: Gulf of Alaska (GoA), 3: California
Current (CC), 5: Gulf of Mexico (GoM), 6: Southeast U.S.
Continental Shelf (SEUS), 7: Northeast U.S. Continental Shelf

(NEUS), 8: Scotian Shelf (SS), 9: Newfoundland-Labrador Shelf (NL),

10: Insular Pacific Hawaiian (IPH), 65: Aleutian Islands

LMEs - coherent
ocean areas along
continental
margins
(productive
regions).

LMEs have been
defined based on
ecological criteria,
bathymetry,
hydrography,
productivity and
trophic
relationships



Multi-Model Forecasts

Many studies have found that forecasts from multiple models are better
than those from any single model

Here we examine the skill of SST hindcasts from the North American
Multi-Model Ensemble (NMME), phase 1 (Kirtman et al. 2014, BAMS)

Monthly Hindcasts during 1982-2002 from 14 models
— All output on a 1° lat x 1° lon grid
Skill estimated by:
— First average ensembles from individual models
— Average models to create a multi-model mean hindcast
— Bias correct hindcasts by removing drift (initialization month, lead)
— Skill of SST hindcasts evaluated relative to %4° Reynolds Ol SST data set

What is the skill of SST forecasts in the US Large Marine Ecosystem
regions around the US?
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Anomaly Correlation Coefficient (ACC)
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Overall Skill Estimates of SST hindcasts
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Probability forecast assessment

Briar score how well do models forecast the probability of an
SST anomaly being in the cold (lower), neutral or warm tercile
Lower score is more skillful
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Brier Score Decomposition

BrS = Reliability + Resolution + Uncertainty

* Reliability - how well the a priori predicted probability
forecast of an event coincides with the posteriori observed
frequency of the event.

® Resolution - indicates how well forecasts distinguish
situations with distinctly different frequencies of
occurrence. In the worst case, when the climatic probability
is always forecast, the resolution is zero. In the best case,

* Uncertainty - measures the variability of the observations,
and is independent of the forecast. It indicates the degree
to which situations are easy or difficult to predict.



Model Spread vs skill

4 MONTH FORECAST

RMSE — SPREAD (ldeally =0)

0.4

Individuallg mddels
RN

Initialization Month

Individual Models
Spread< RMSE;
“underdispersive’ — ook
“Overconfident” o

— CFSvl
— CFSv2

Ensemble also improved the Resolution

—8 ENSEMBLE

—— (CanCM3

—— CanCM4

—— CCSM3

—— CCSM4

— CM2pl

—— (CM2pl-aer04

) —— CM2p5-FLOR-A06
——— (CM2p5-FLOR-B01

Observed Relative Frequency

Observed Relative Frequency

Reliability Diagram; 4 month forecast

Upper Tercile

Lol
(=3

T
=)

£
o

o
=~

no resolution
(climatology)

=
()
T
\

S
oo
=3

1y
o
-

02 03 04 05 06 0 08 09 10

Lower Tercile

=
=]

o
o
\
LS
=

=
k)

no e A‘«‘l’h‘“[ﬁl
(climatology)

0.0 01 0.2 03 04 05 0.6 0.7 08 09 1.0
Forecast Probability

e Ensemble

7
7 @ obs

7’

initial Forecast range
niti .
A Individual model

time _~7



Northern CCS

20
18

16
14

Hindcast skill (ACC)
for 3-sub regions [
in the California
Current LME
from CanCM4 5

12
10

Cape Mendocino |

e
™

0
JFMAMJJASOND
Central CCS

o
o

S
o

0
JFMAMJ JASOND

Southrn CCS
¥ N

[ above 0 at 5% level
B above persistence at 10% level with ACC > 0.5

[ above persistence at 10% level with ACC < 0.5.

Lead Time (months)

Jacox et al., Climate Dynamics 5 ,
JFMAMJJASOND JFMAMJJASOND

Initialization Month

Anomaly Correlation Coefficient



Processes that influence predictability
ENSO

Correlation of Pacific basin wide SST with CCS regionally
averaged SST O, 3, 6, and 9 months prior in CanCM4 model



Forecast Skill in the CC
LME for:

a) initialization,

b) lead time

c) forecast month

Persistence + Nino3.4
forecast from a simple
multiple linear
regression model
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Forecast skill above persistence

ACC of dynamical forecast minus ACC of persistence forecast
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The contribution to skill in CanCM4 above persistence by years that follow a
moderate to strong El Niflo or La Nifia (N=10) and by all other years (N=18) is

shown in the middle and right panels, respectively.

White dots indicated significant skill above persistence (95% confidence level).
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Application of SST forecasts to Pacific Sardines

* Sardine population simulated using an age-structured model
— Recruitment dependent on parents biomass and SST

* Current harvest guideline (HG) dependent on previous year’s SST and
biomass in CC LME (HG2)

e Use late winter/early spring SST forecast from an NMME model
— Use in Hg (controls fishing rate) to get predicted biomass (HG3)

e Use the predicted Biomass to inform the following years biomass (HG4)

NO_ i P —_—

fishing =y HG4 =
HG4 - —e— T
HG3 - —e—
HG3 = —eo—
HG2 = ———

HG2 = —e—
HGl - —e— HGl =»——— HG1 = no SST

4 y y - 1 1 I — HG2 = past SST

700 900 1100 1300 100 125 150 175 |MCITICERSS

Mean Stock Biomass (1000 mt) Mean Yield (1000 mt) HG4 = forecast SST for
+/- 95th to 5th percenmes +/- 95th to 5th percenllles fishing rate and

biomass forecast

Tomassi et al. 2016 Ecological Applications



Ecosystem Prediction

Statistical Ecosystem

prediction
Global Physical Physical Regional
System Boundary Ocean High Resolution
Seasonal > | Model > | Physical/BGC
prediction Conditions (e.g. ROMS) prediction
Assimilate
BGC data ¥
Global Earth System Higher trophic
Models with Ocean BGC level diagnosed or
High resolution (GFDL CM2.6) or Predicted
variable resolution (e.g. MPAS) Models > (wide array of
models)




Summary

As a first step explored seasonal SST forecast skill from climate
models

GCMs have skill in predicting SSTs but varies widely by region,
— Gulf of Alaska & California Current reasonably good
Skill in LME CC sub-regions
— Decreases from north to south in the 3 California Current subregions
— CC Skill mainly from persistence and ENSO
Multi-model mean generally the best forecast though not
necessarily for all regions at all time
— Increase in skill of ensemble large for probability forecasts

Steps that are needed to go from large-scale physical model
forecasts to fine-scale ecosystem forecasts are discussed
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Application of SST forecasts to Pacific Sardines

Sardine population simulated using an age-structured model
— Recruitment dependent on (parents) biomass and SST

Current harvest guideline (HG) dependent on previous year’s
SST and biomass in southern CC LME (HG2)

Use late winter/early spring SST forecast from an NMME model

— Use in HG (controls fishing rate) to get predicted biomass
(HG3)

Use the predicted biomass to inform the following years
biomass (HG4)

Tomassi et al. Ecological Applications



To test forecast utility, compared effectiveness
of four different sardine HGs

HG1 — constant fishing rate of 0.18
SST averaging

HG2 : ii window
| for fishing rate

t-3 t-2 t1 t @ t+1 t+2

~ Biomass

t-3 t-2 t1 t t+1 t+2

t-3 t-2 t1 t @ t+1 t+2

Tommasi et al. Ecological Applications



Application of SST forecasts to Pacific Sardines
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3. Providing uncertainty estimates on the
forecasts

Can draw on expertise from the weather forecast
community on skill estimates for probability
forecasts. Many methods to estimate probability skill

Using large ensembles from multiple models

Some data assimilation systems (e.g. ensemble
Kalman filters)

Some statistical prediction methods, e.g. Linear
Inverse models (LIMSs), provide error estimates and
state based estimates of skill.



Global Climate Models (GCMs)

Developed to study
climate variability and
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Here we evaluate SST
forecast skill of GCMS from
the North American Multi-
Model Ensemble (NMME)
for Large Marine Ecosystems
(LMEs) — here: CC, GoA

GCM — ocean, atmosphere, land, and sea ice

Figure courtesy of D. Tommasi



Application of SST forecasts to
Pacific Sardines

* Robust recruitment — spring SST relationship
 Climate variability drives fluctuations in abundance

e Current harvest guideline (HG) dependent on previous
year’s SST in southern California Current LME

369N

N

140°W120°W

Tommasi et al. submitted to Ecological Applications



SST Forecast Skill for the Gulf of Alaska
and the California Current LMEs
Anomaly Correlation Coefficient (ACC)
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NMME Ensemble SST Forecast Skill
Gulf of Alaska and the California Current LMEs
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