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 Skillful subseasonal
weather predictions of
NH cold season
extratropical weather and
extreme weather events /
blocking linked to the
Northern Annular Mode
(NAM).

Thompson and Wallace [2001]
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THE NAM IN THE TROPOSPHERE AND STRATOSPHERE

500 mb winds 10 mb winds
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USING THE STRATOSPHERE TO FORECAST THE JET STREAM?

A Composute of 18 Weak Vortex Events
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Arrangement of

Phase 1: Seasonal Predictions

(Monthly-Mean Output)

Phase 2: Subseasonal Forecasts

(Sub-daily and Daily-Mean

Research Objectives:
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(1) Quantify fundamental NAM
characteristics in the NMME-
2 models and related NAM
predictability.

Identify model biases in the
development and
subsequent impacts of major
sudden stratospheric
warmings.

Hindcast No. of Model resolution | Model resolution
Period Members Members (month) (atmos) (ocean)
Active
NCEP/CFSv2 1982-2010 | 24 (28) 4 members (0, | 0-9 T126L64 MOM4L40 .25deg
6, 12, 18z) every Eq Output)
5 day
GFDL/CM2.1 1982-2010 | 10 All 15t of the 0-11 2x2.5degl 24 MOM4L50 .3deg
month 0Z Eq
GFDL/CM2.5 1982- 24 All 15t of the 0-11 C18L32 MOMS5 L50 0.30
(FLOR) present month 0Z (50km) deg Eq
1degPolar1.5
CMC1-CanCM3 | 1981-2010 |10 All 18 of the 0-11 CanAM3T63L31 | CanOM4L40
month 0Z .94deg Eq
CMC1-CanCM4 | 1981-2010 |10 All 15 of the 0-11 CanAM4 T63L35 | CanOM4L40
month 0Z .94deg Eq
NCAR/CCSM4 | 1982-2010 |10 All 15t of the 0-11 0.9x1.25degl 26 POPLG0
month 0Z .25deg Eg
NASA/GEOSS |1981-2010 | 11 4 memsevery 5 [ 0-9 1x1.25 deg L72 MOM4L40 .25deg
days; 7 mems Eq (2)
on last day of
last month
NCAR/CESM1 | 1982-2010 | 10 All 1%t of the 0-11 0.9x1.25deglL 30 POPL60
month 0Z .25deg Eq
Kirtman et dl., 2014
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DATA & METHODOLOGY

muy : e . TheNorth American Multi-Model Ensemble

ERA-Interim Reanalysis —”Observations” (1982-2013)
NMME-2 Models (CanCM3, CanCM4, CCSM4) (1982-2013)

Focus on November — March initializations.

Daily-mean fields.
NAM defined as 15t EOF of GPH at each pressure level. Leading PC = NAM Index.

For NMME models, NAM calculated by projecting model fields onto NAM characteristic
patterns from reanalysis (avoid model biases in modes).
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Part I: Fundamental
Characteristics of the AO/NAM in
the NMME-2 Models
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SURFACE AO SIGNATURE
(NDJFM SLP REGRESSED
ONTO AO INDEX)

* Model bias toward east-based NAO.
* Much stronger Pacific loading center
than obs (especially in CanCM4 and

CCSM4 models.
* High spatial correlations (> 0.7).

CanCM4
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SURFACE AO AUTOCORRELATION
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POSITIVE vs. NEGATIVE AO FREQUENCY

Positive AO Regimes Negative AO Regimes
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MAX JET LATITUDE

465 Histogram of Max Jet Latitude (CANCM3) siib Histogram of Max Jet Latitude (CANCM4)
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NDJFM 50 MB HEIGHTS
REGRESSED ONTO AO
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* Annular-like in most models '30 =
(except CCSM4). oo

* Important symmetry and 40
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regional differences in center
and structure of vortex.

CanCM4
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STRATOSPHERIC
POLAR VORTEX

- Standard Deviation of U @ 60 N, 10 hPa During DJF VARIABILITY
181 22-28% lower variability |
16} compared to reanalysis | * Models underestimate
I variability in NH polar
vortex.

[m/s]

* Likely due to weaker and
more infrequent SSWs.

e |ssue known with low-top
models [e.g., Charlton-
Perez et al. 2013; Furtado
et al. 2015].

Standard Deviation
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Part Il: Simulated Major SSWs:
Precursors and Post-SSW Impacts

Define a major sudden stratospheric warming (SSW) as done in Charlton
and Polvani [2007] and Butler and Polvani [2011].

For ERA-Interim, 20 events from 1982-2013.

For models, apply definition per ensemble member (starting month =
November). For statistics, randomly choose 10 simulated SSWs per run (N
=100 — less for CCSM4 because of lack of major SSW frequency — Factor of 3
less).
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PRECURSOR PATTERNS-
DAYS -30 TO -15
COMPOSITE 500 MB MAP

 Common features include negative
NPO/EPO and Northern Eurasian
ridge.

* CCSMA4 has almost the complete
opposite pattern.

CanCM4
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PRECURSOR PATTERNS - VERTICAL EP
FLUX (WAVE FORCING)

EPz (40-80 N) PreCursor to Major SSWs
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POST-SSW IMPACTS -
DAYS +5 TO +60
COMPOSITE 500 MB GPH

NAO signature
present but slight-

east bias in models.

ERA-INTERIM O Little agreement in
Pacific sector.

N CCsMm4a
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POST-SSW IMPACTS
— DAYS +5 TO +60
COMPOSITE SFC T

CanCM4

ERA-INTERIM
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SURFACE AO RESPONSE - 0 TO 60 DAYS AFTER MAJOR SSW

AO Index Days 0-60 After Major SSWs

1.0 - =——0bservations

0.8 —Cancma .

B —cosma * Negative tendancy clearly
B 041 seen in the observations
5 024
X 001 for near-surface AO.
n 4
= ‘g-i. * Models have a very weak
= 05 / near neutral signal.
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WHY NO DOWNWARD PROPAGATION? — WAVE FLUXES

Anomalous div-EP AFTER Major SSWs
(Days +5 to +30) (ERA-Interim) EP FLUX DIVERGENCE
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WHY NO DOWNWARD PROPAGATION? — WAVE FLUXES

CanCM3 CanCM4
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CONCLUSIONS

NMME Phase-2 models have fundamental flaws in the general structure of the NAM
(frequency of regimes, east-based NAO).

Downward propagation of signal from the stratosphere = troposphere remains a
problem (CanCM4 an exception).
S/T coupling biases be tied to incorrect wave-mean flow interactions in the troposphere
following major SSWs.
Ongoing Work:
Model-skill scores for observed SSWs and their post-SSW impacts on lower tropospheric conditions.
Closer look into case studies for insight into wave propagation or other associated errors/model bias.
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