






3.3  Regional patterns in the US Atlantic

RSL has been rising along the entire US Atlantic 
coast, and it has been rising faster in the Mid-Atlantic 
region (Virgnia, Maryland, and Delaware including 
the Chesapeake Bay) and the Carolinas primarily due 
to subsidence (Figure 3) (CCSP 2009). In the Mid-
Atlantic region, possible causes of subsidence include 
sediment consolidation, GIA, groundwater extraction, 
and tectonics (Poag et al. 2004, Hayden et al. 2008). 
GIA is less of a factor in the Carolinas, where possible 
causes of subsidence are groundwater extraction and 
sediment compaction. 

Sallenger et al. (2012) detect a “hotspot” of accelerated 
sea level rise along the 1,000 km of coast from Cape 
Hatteras to above Boston and suggest it may be 
related to circulation changes in the North Atlantic 
Ocean. Previous analyses along the US Atlantic coast 
using long records of variable length did not detect 
this acceleration (Houston and Dean 2011). The 

presence or absence of accelerations in SLR and the 
causal mechanisms remain an area of scientific debate. 
However, the observed rates of RSL rise and the 
evidence presented by Sallenger et al (2012) and more 
recently by Boon (2012) are sufficient to suggest that 
experts and decision makers may consider accelerated 
rates along the northeastern stretch of coast into their 
risk-averse, worst-case scenarios.

4. Global Mean Sea Level Rise Scenarios

We have very high confidence (>9 in 10 chance) 
that global mean sea level will rise at least 0.2 meters  
(8 inches) and no more than 2.0 meters (6.6 feet) 
by 2100. Global mean SLR can be estimated from 
physical evidence (e.g. observations of sea level and 
land ice variability) (Pfeffer et al. 2008, Katsman et 
al 2011, Jevrejeva et al 2012), expert judgment (NRC 
1987, NRC 2011, NRC 2012), general circulation 
models (GCMs) (IPCC 2007a, Yin 2012), and from 
semi-empirical methods that utilize both observations 

Figure 8. Monthly mean tide gauge sea levels from the Gulf of Mexico (Galveston, TX) to the western North Atlantic 
(Wilmington, DE). A mean annual cycle and trend are removed, and each series is low-passed with a convolution filter passing 
>90% amplitude at periods longer than 1.9 years (Thompson 2011). 

Main Report

10   |  November 2012



and GCMs (Grinsted et al. 2009, Jevrejeva 
et al. 2010, Vermeer and Rahmstorf 
2009, Horton et al. 2008, Rahmstorf et 
al 2012). We base our confidence in the 
range of estimated global mean SLR on 
a wide range of the estimates reflected in 
the scientific literature (Figure 9), using 
guidance set forth by the NCA (Moss and 
Yohe 2011, IPCC 2001 and 2007a) (Table 
1). This approach has also been applied 
by the New York City Panel on Climate 
Change (NPCC 2010).

In recent decades, the dominant 
contributors to global SLR have been 
ocean warming and ice sheet loss. Many 
previous studies, including the IPCC, 
assume ocean warming to be the dominant 
contributor. However, the NRC (2012) 
recently reports that advances in satellite 
measurements indicate ice sheet loss as 
a greater contributor to global SLR than 
ocean warming over the period of 1993 
to 2008. Our scenarios are based on four 
estimates of global SLR by 2100 that reflect 
different degrees of ocean warming and ice 
sheet loss (Table 2 and Figure 10).

Figure 9. End of century (~2090 – 2100) estimates for global mean 
sea level rise in meters. Meehl et al (2007) is based on climate model 
projections for the IPCC and outlined in black. NRC (1987, 2011, and 2012) 
is based on synthesis of the scientific literature and shown in light gray. 
Vermeer and Rahmstorf (2009), Horton et al (2008), Jevrejeva et al (2010), 
Grinsted et al (2009) are based on semi-empirical approaches and shown 
in dark gray. Pfeffer et al (2008) is a calculation of the maximum possible 
contribution from ice sheet loss and glacial melting and shown in black. 

Table 1. Confidence in the validity of a finding by considering (i) the quality of the evidence and (ii) the level of agreement 
among experts with relevant knowledge (based on Moss and Yohe 2011).

Confidence 
Level Possible Contributing Factors

Very High Strong evidence (established theory, multiple sources, consistent results, well documented 
and accepted methods, etc.), high consensus

High Moderate evidence (several sources, some consistency, methods vary and/or  
documentation limited, etc.), medium consensus

Medium Suggestive evidence (a few sources, limited consistency, models incomplete, methods 
emerging, etc.), competing schools of thought

Low
Inconclusive evidence (limited sources, extrapolations, inconsistent findings, poor  
documentation and/or methods not tested, etc.), disagreement or lack of opinions  
among experts
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4.1  Key Uncertainties on the Global SLR Scenarios

At this stage, the greatest uncertainty surrounding 
estimates of future global SLR is the rate and magnitude 
of ice sheet loss, primarily from Greenland and West 
Antarctica. Our Highest Scenario of global SLR by 
2100 is derived from a combination of estimated ocean 
warming from the IPCC AR4 global SLR projections 
and a calculation of the maximum possible glacier and 
ice sheet loss by the end of the century (Pfeffer et al 
2008). The Highest Scenario should be considered in 

situations where there is little tolerance for risk (e.g. 
new infrastructure with a long anticipated life cycle 
such as a power plant).

Our Intermediate-High Scenario is based on an 
average of the high end of semi-empirical, global 
SLR projections (Grinsted et al. 2009, Jevrejeva et al. 
2010, Vermeer and Rahmstorf 2009, Horton et al. 
2008). Semi-empirical projections utilize statistical 
relationships between observed global sea level change, 
including recent ice sheet loss, and air temperature. 

Our Intermediate-Low Scenario is based on 
the upper end of IPCC Fourth Assessment 
Report (AR4) global SLR projections 
resulting from climate models using the B1 
emissions scenarios. The Intermediate-High 
Scenario allows experts and decision makers 
to assess risk from limited ice sheet loss. The 
Intermediate Low Scenario allows experts and 
decision makers to assess risk primarily from 
ocean warming.

Figure 10. Global mean sea level rise scenarios. Present Mean Sea Level (MSL) for the US coasts is determined from the 
National Tidal Datum Epoch (NTDE) provided by NOAA. The NTDE is calculated using tide gauge observations from 1983 
– 2001. Therefore, we use 1992, the mid-point of the NTDE, as a starting point for the projected curves. The Intermediate 
High Scenario is an average of the high end of ranges of global mean SLR reported by several studies using semi-empirical 
approaches. The Intermediate Low Scenario is the global mean SLR projection from the IPCC AR4 at 95% confidence interval. 

Table 2. Global SLR Scenarios 

Scenario SLR by 2100 (m)* SLR by 2100 (ft)*

Highest 2.0 6.6
Intermediate-High 1.2 3.9

Intermediate-Low 0.5 1.6

Lowest 0.2 0.7
* Using mean sea level in 1992 as a starting point.
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The Lowest Scenario is based on a linear extrapolation 
of the historical SLR rate derived from tide gauge 
records beginning in 1900 (1.7 mm/yr). Global sea 
level has risen 0.2 meters (8 inches) over this period 
of record, and we anticipate at least another 8 inches 
by 2100. The rate of global mean SLR derived from 
satellite altimetry (1992 to 2010) has been substantially 
higher (3.2 mm/yr), approaching twice the rate of the 
longer historical record from tide gauges. However, 
the 18-year altimeter record is insufficient in duration 
for projecting century-scale global SLR. Trends 
derived from the shorter records are less reliable as 
projections because they are affected by interannual 
and decadal climate and oceanographic patterns that 
are superimposed upon the long-term rise of global sea 
level. The Lowest Scenario should be considered where 
there is a great tolerance for risk.

There is a highly significant correlation between 
observations of global mean SLR and increasing global 
mean temperature (Vermeer and Rahmstorf 2009, 
Rahmstorf et al. 2011), and the IPCC (2007a) and 
more recent studies (Schaeffer et al. 2012) anticipate 
that global mean sea level will continue to rise even if 
warming ceases. Our Highest Scenario is an upper limit 
for SLR by 2100, but the possibility exists that SLR 
could exceed this limit beyond this timeframe (Pfeffer et 
al 2008). Our Intermediate-Low and Lowest Scenarios 
are optimistic scenarios of future environmental change 
assuming rates of ice sheet loss and ocean warming 
slightly higher or similar to recent observations. 

4.2  Ice Sheet Loss

Other studies (e.g. Rohling et al. 2008) have arrived 
at even greater estimates of future global mean SLR 
than our Highest Scenario, but we are not confident 
in the plausibility of those estimates at this time. 
The IPCC AR4 produced some of the more widely 
used projections of global SLR for the 21st century 
(IPCC 2007a). The IPCC projections included ocean 
warming, contributions from glaciers, and modeled 
partial ice sheet contributions. The IPCC AR4 
estimates did not include, however, potential rapid 
dynamic response of Greenland and Antarctic Ice 
Sheets as reflected in our Highest Scenario. 

A growing body of recently published work suggests 
that, due to increasing loss, the great polar ice sheets 
in Greenland and Antarctica will become much more 
significant contributors to global SLR in the future 
(e.g., Rignot et al. 2011, Vermeer and Rahmstorf 2009, 
Van den Broeke et al 2011, NRC 2012). Ice sheet 
contributions to global mean SLR stem from mass loss 
brought about by melting and discharge of ice into the 
ocean at marine-terminating glaciers and ice streams 
(NRC 2012).  Multiple reports indicate that mass loss 
of both the Greenland and Antarctic ice sheets may 
have accelerated over the past two decades, despite 
high inter-annual variability in space and time (Chen 
et al. 2011, Rignot et al. 2011, Van den Broeke 2011, 
NRC 2012). For example, regional variability of mass 
loss from the Greenland ice sheet (GIS) over the past 
few years shows that areas of accelerating deterioration 
changed from the southeast part of the ice sheet to the 
northwest part, suggesting high sensitivity of the GIS 
to regional climate (Chen et al. 2011). In Antarctica, 
ice loss is occurring in some coastal areas, and ice 
accumulation is occurring in interior Antarctica. 
While the balance between ice loss and accumulation 
remains an area of investigation, recent observations 
suggest that ice loss has been greater (King et al. 2012).

Most of the ice loss in Antarctica has come from the 
West Antarctic ice sheet (WAIS; Rignot et al. 2008). 
A significant portion of the WAIS is floating at or 
grounded below sea level, as are relatively smaller parts 
of the ice sheets in East Antarctica and Greenland. 
Floating ice shelves support land-based ice sheets. 
Current and future ocean warming below the surface 
make ice shelves susceptible to catastrophic collapse, 
which in turn can trigger increased ice discharge to the 
ocean (Rignot et al. 2004, Scambos et al. 2004, Jacobs 
et al. 2011, Joughlin and Alley 2011, Yin et al. 2011). 
Better understanding of how the polar ice sheets will 
respond to further changes in climatic conditions over 
the 21st century requires continued development of 
physical models (Price et al. 2011). 

Ice sheet losses will lower the gravitational attraction 
ice sheets have for surrounding seas, producing 
spatial variability in changes to global mean sea level  
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(Kopp et al. 2010; Mitrovica et al. 2001; Mitrovica 
et al. 2009). Although seemingly counterintuitive, 
sea level falls close to deteriorating ice sheets even 
though ice sheet losses are discharged into the adjacent 
sea. This lowering of sea level is due to gravitational 
effects that can cause SLR up to ~2,000 km from the 
melting ice sheet. SLR resulting from deterioration 
of the GIS is thought to be relatively lower than the 
global average for the contiguous US, Alaska, and US 
territories in the Caribbean Sea and relatively higher 
for Hawaii and US territories in the Pacific Ocean 
(Kopp et al. 2010). SLR resulting from deterioration 
of the WAIS is thought to be relatively higher than the 
global average for all states and territories of the US 
(Mitrovica et al. 2009).

4.3  �Methods for Constructing Scenario Data 

Both the rate and magnitude of SLR are important 
for vulnerability and impact assessment because, 
as mentioned below, the time horizon is a critical 
factor affecting risk tolerance for coastal management 
actions. Even long-term coastal management actions 
(e.g. coastal habitat restoration) are sensitive to near-
term rates and amounts of SLR. To address these 
considerations, we provide the following methodology 
for creating curves, anchored to a specific date, and 
yielding estimates for specific time horizons. 

Future estimates for global mean SLR are relative 
to the current elevation of global mean sea level.  
It is important to select a starting point in time 
from which to move forward with the scenarios.  
Present Mean Sea Level (MSL) for the US coasts 
is determined from long-term NOAA tide gauge 
records and is referenced to the current National 
Tidal Datum Epoch (NTDE) provided by NOAA.  
The NTDE is a 19-year period with the current 
NTDE being 1983 to 2001.  NOAA uses the 
NTDE as the basis for all tidal datums (i.e., Mean 
High Water and Mean Lower Low Water) and uses 
NTDE MSL as the reference for presentation of 
RSL trends (Figure 3). MSL for the NTDE is the 
mean of hourly heights observed over the entire 19-
year period.  Because mean sea level is an average 
over the 19-year NTDE, the mean sea level value is 

associated with the mid-point of the NTDE, which 
is the year 1992. As the mid-point for the NTDE, 
1992 is selected as the start-point for our scenarios 
(Figure 10, also see Flick et al. 2012).

As described above, the Lowest Scenario is a 
linear extrapolation of the historic trend of 20th 
century tide gauge measurements.  In contrast, the 
Highest, Intermediate-High and Intermediate-Low 
Scenarios represent possible future acceleration in 
global mean sea level rise and thus are not described 
by linear relationships. To represent the non-linear 
trajectory of SLR in these scenarios, the NRC 
(1987) and USACE (2011) scheme is adopted, 
wherein the future global mean SLR is represented 
by the following quadratic equation:

E(t) = 0.0017t + bt2        (1)

in which t represents years, starting in 1992, b is a 
constant, and E(t) is the eustatic SLR, in meters, as 
a function of t.  To fit the curves to our scenarios, as 
defined above, the constant b has a value of 1.56E-
04 (Highest Scenario), 8.71E-05 (Intermediate-
High Scenario), and 2.71E-05 (Intermediate-Low 
Scenario).  It should be emphasized that this 
straightforward quadratic approach to the time 
evolution is chosen in part for its simplicity; there is 
no scientific reason or evidence to assume that SLR 
will evolve in precisely this smooth manner.

If it is necessary to estimate a projected rise in global 
mean sea level for any of the scenarios, but starting in 
a year more recent than 1992, the following equation 
can be used:

E(t2) - E(t1) = 0.0017(t2 - t1) + b(t22 - t12)       (2)

where t1 is the time between the beginning year of 
interest and 1992 and t2 is the time between the 
ending year of interest and 1992 (Knuuti 2002, Flick 
et al. 2012).  For example, global mean SLR for any 
of the accelerating scenarios can be calculated over the 
period of time between 2011 and 2050 by using t1 = 
2011-1992 = 19 years and t2 = 2050-1992 = 58 years.
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3 �Continental crust - The crust is the solid, outermost layer of the Earth 
that makes up the continents (continental crust), including mountain 
ranges, and that lies beneath the oceans (oceanic crust).

5. Enhancing the Global SLR Scenarios 

The development of sea level change scenarios (global, 
regional, and local) is an initial stage in conducting 
coastal vulnerability assessments (Figure 11). We 
recommend that the choice of scenarios involve 
interdisciplinary scientific experts, as well as coastal 
managers and planners who understand relevant 
decision factors. Three decision factors generally 
considered in the choice of sea level scenarios are: 
location, time horizon, and risk tolerance (Mote 2008). 

Location refers to the planning or management area 
for which assessment or analysis is being conducted. 
Time horizon refers to the committed life span of a 
particular use in a coastal area and varies depending 
on whether you are planning temporary flood control, 
building long-term infrastructure such as an airport 
or shipyard, or restoring or preserving ecosystem 
function. Finally, risk tolerance refers to a community’s 
or decision maker’s willingness to accept a higher or 
lower probability of impacts.

Risks associated with SLR may not be evident when 
considering sea level change in isolation from climate 
or over a narrowly defined coastal planning area. Power 
stations or airports at specific locations along the coast 
may be critically important to the regional or national 

economy and thus may be protected with a low tolerance 
for projected long-term, regional, or global scale 
impacts (e.g. a large levee). Such levels of protection, 
however, may have adverse effects on adjacent parts of 
the coast or create a false sense of reduced risk if sea 
level rises and coastal flooding increases (Smits et al. 
2006, Parris and Lacko 2009).

Additional information should be combined with 
the global scenarios to incorporate regional and local 
conditions when conducting risk analysis. These 

factors include regional mean sea level 
variability, local and regional vertical 
land movement, coastal environmental 
processes (geological, ecological, 
biological, and socio-economic), and the 
effect of extreme weather and climate 
on RSL. Much of this information is 
being prepared for the NCA, including 
scenarios of climate, land-use/land 
change, and different socio-economic 
conditions as well as analysis of changes 
in extreme weather and climate. The 
NOAA Coastal Services Center and the 
USGS also provide access to information 
via Digital Coast, including two 
companion reports on developing sea 
level scenarios (NOAA 2012, NOAA 
2010). As mentioned previously, 
regional and local sea level scenarios are 

beyond the scope of this report. We provide Table 3 as 
a basic template for those people who wish to build on 
our scenarios.

5.1  Vertical Land Movement (VLM)

Regional and local sea level scenarios should account 
for vertical land movement. Following the last glacial 
maximum, the Earth’s crust3  began to rise in response 
to earlier subsidence under the weight of the ice. 
This process, post-glacial rebound, varies across the 
continent and may be a significant factor in vertical 
land movement in some areas. It is typically accounted 
for by estimating GIA.

Figure 11. Developing sea level scenarios (Nicholls et al 2011). MSL – mean sea 
level; ESL – Extreme sea level.
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GIA refers to the rise of the Earth’s crust that was 
depressed by the weight of continental ice sheets during 
the last glacial maximum (Appendix 1; Lambeck et 
al. 2010, Mitrovica et al. 2010). The reaction of the 
Earth’s crust to ice load changes is a relatively slow and 
delayed process dependent upon the viscosity of the 
mantle, on which the Earth’s crust rests. This reaction 
continues long after ice sheets melt and water volumes 
stabilize. For example, the continental crust is still 

experiencing post-glacial rebound from the reduction 
of ice sheets present during the last glacial maximum, 
which occurred approximately 21,000 years ago.

Surface deformations from VLM induced by GIA 
can raise or lower RSL, depending on the proximity 
to the prior ice sheet (Lambeck et al. 2010, Mitrovica 
et al. 2010). Glacial rebound in North America is 
largest around Hudson Bay, where the former ice sheet 
was both centered and thickest. Meanwhile, land is 
subsiding further south at and beyond the edges of 
the former ice sheet, in response to the rebound to 
the north. GIA is changing coastal land elevations 

at rates of mm-per-year. As a result, it is necessary to 
consider GIA in the analysis of sea level observations 
and trends. Recent progress in GIA models has 
reduced uncertainties in ice load history and mantle 
viscosity, improving interpretations of sea level analyses 
(Mitrovica et al. 2010, Peltier 2004).

The contribution of GIA to net changes in RSL varies 
for much of the US coastline and its island territories, 
with modeled rates ranging from +0.5 to +2.0 mm/yr for 

much of the mainland 
and northern Alaska 
(Figure 12). Portions 
of the Northeast and 
Northwest mainland 
coasts have modeled 
rates at the upper end 
of this range. Rates vary 
from slightly positive 
to slightly negative for 
only the most southern 
and northern latitudes 
of the mainland, as 
well as for much of 
Alaska and the island 
states and territories. 
Southern Alaska is the 
only region that shows 
locations with a falling 
RSL due to GIA effects, 
with modeled rates 
between -0.5 and -1.7 
mm/yr at a few sites.

With the advent of Global Positioning Systems (GPS), 
precise spatial estimates of vertical and horizontal land 
movement are becoming available.  Using over three 
hundred and sixty GPS sites in Canada and United 
States, Sella et al. (2007) produced a map of “vertical 
velocities” which may be used to understand the 
rates of VLM that vary within an order of magnitude 
along much of the coastal region of the east and the 
south (Figure 13).  Most of the GPS measurements 
demonstrated consistency with GIA models. The 
magnitude of subsidence along the eastern US is about 1 
to 2 mm. The international community has recognized 

Table 3. Template for developing regional or local sea level scenarios

Contributing Variables

Scenarios of Sea Level Change

Lowest  
Scenario

Intermediate- 
Low Scenario

Intermediate- 
High Scenario

Highest  
Scenario

Global mean sea level rise* (m) 0.2 0.5 1.2 2.0

Vertical Land Movement  
(subsidence or uplift)** 

Ocean Basin Trend***
(from tide gauges and satellites)

Total Relative Sea Level Change

Extreme Water Level (from  
existing flood models or  
long-term tide gauges)

* �Equations from Section 4.3 can be used to calculate scenarios of sea level change over desired period  
and to populate the global mean SLR term in the first row. 

** This row can be populated using, in part, the information found in Sections 5.1.
*** This row can be populated using, in part, the information found in Sections 3.1, 3.2, 3.3 and 5.3.
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Figure 13. Vertical GPS site motions  
with respect to IGb00 (a reference plane)  
as estimated by Sella et al. (2007).

the need to upgrade the observational infrastructure to 
include co-location of continuous GPS receivers and 
tide gauges (see Continuous GPS Update). Nationally, 
NOAA has recognized the need to co-locate these 
systems as much as possible and has already integrated 
repeat static GPS measurements on tidal benchmarks as 
part of the operation and maintenance of the National 
Water Level Observation Network (NWLON).

At some locations along the coastline, VLM may 
be exacerbated by factors other than GIA. Other 
factors of VLM include, but are not limited to: plate 
tectonics; natural compaction of thick layers of loose, 
unconsolidated sediments; sediment compaction due 
to excessive withdrawal of groundwater, oil, or gas; 
and subsidence due to oxidation of organic soil. Sun 
et al. (1998) indicate that land subsidence due to 
groundwater withdrawal in southern New Jersey has 
increased from 2 cm to 3 cm over the past 40 years. 
Along the Gulf coast states, subsidence is widespread 
extending beyond the Mississippi Delta to Mississippi 
and the estimated rates are as high as 25 mm/year 
with much of the delta subsiding at 5 to 10 mm/yr 
(Gonzalez and Tornqvist 2006, Shinkle and Dokka 
2004). In Alaska, the uplift rates are much higher as 

they are caused by significant tectonic activity in the 
region as well as post-glacial rebound (Larsen et al. 
2003, Larsen et al. 2007).

Recent geodetic studies clearly document non-GIA 
VLM and/or RSL trends over spatial scales approaching 
100s of kilometers. For example, traditional geodesy 
and continuous global positioning systems (GPS) 

Figure 12. Contribution of GIA to net changes in RSL varies for much of the US coastline Alaska (A), Hawaii 
(B), Puerto Rico and the US Virgin Islands (C), and the contiguous US (D), as predicted by the ICE-5G(VM2) 
model (Peltier 2004). Rate locations are tide gauge sites in the Permanent Service for Mean Sea Level 
(PSMSL) dataset. Values account for sharp coastal gradients through use of a high spatial resolution model, 
and represent rates averaged over the 20th and 21st centuries. For US territories not shown, rates fall 
within the -0.5 to +0.5 mm/yr range.
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studies in the Cascadia subduction zone (Cascadia) 
that spans CA, OR, and WA suggest regional uplift 
signals in the range of 1 to 3mm/yr (Burgette et al. 
2009, Mazzotti et al. 2007). Whether this rate is 
constant over time depends on earthquake variability 
in Cascadia (Wang et al. 2003, Wang 2007). However, 
modern, observable rates in Cascadia essentially negate 
global mean SLR in Alaska and parts of Washington 
and Oregon. More detailed VLM data are provided for 
specific areas in California, including the San Francisco 
Bay area and the Los Angeles Basin (Burgmann et al. 
2005; Brooks et al. 2007). Deep subsidence in the 
Gulf of Mexico has been linked to a combination of 
groundwater withdrawal, regional tectonic loading on 
the Earth’s crust from the Mississippi River Delta, and 
possibly faulting (Dokka 2011). 

5.2  Extremes of Weather and Climate

Coastal managers are most immediately concerned 
with the effect that global, regional, and RSL changes 
have on coastal flooding. In addition to changes in 
mean sea level, consideration of future extremes is 
vitally important for planning and design of coastal 
infrastructure (Zhang et al. 2000).  SLR can amplify 
factors that currently contribute to coastal flooding: 
high tides, storm surge, high waves, and high runoff 
from rivers and creeks (Cayan et al. 2008). All of these 
factors change during extreme weather and climate 
events and often have disproportionately high impacts 
in most coastal regions. Although a consensus has not 
yet been reached on how the frequency and magnitude 
of storms may change in coastal regions of the US, it is 
certain that higher mean sea levels increase the frequency, 
magnitude, and duration of coastal flooding associated 
with a given storm. Thus, considering the impact of 
different weather events combined with scenarios of 
sea level change is crucial in developing hazard profiles 
for emergency planning and vulnerability, impact, and 
adaptation assessments.

Several studies indicate that the number and duration 
of extreme high-water events increase during Atlantic 
Multidecadal Oscillation (AMO) warm phases 
around the Florida Peninsula (Park et al 2010a, Park et 
al 2010b, Park et al 2011). As mentioned previously, 

sea level anomalies related to ENSO along the eastern 
Pacific coast can result in as much as 20 cm of RSL 
rise for an entire winter season (a period of high tides, 
storms, and large waves) (Bromirski and Flick 2008). 
In the San Francisco Bay, global mean SLR and the 
ENSO related anomaly are projected to increase the 
number of sea level extremes (Cayan et al. 2008). 

Coastal vulnerability assessments in some urban centers 
of the US have incorporated SLR and climate scenarios 
into probabilistic flood projections. For example, the 
return period concept used in flood control projects 
provides a risk-based approach to select design flood 
conditions based on probability of occurrence (Horton 
et al 2010, Knowles 2010). The occurrence of storm 
surges and high tides have been incorporated into a 
Joint Probability Method (JPM) in an effort to provide 
probabilistic projections of extreme levels, but the 
JPM methods do not account for future changes in sea 
level and runoff due to climate change (Tomasin and 
Pirazzoli 2008, Liu et al. 2010). These methodologies 
may be particularly useful for incorporating sea level 
into a risk management framework as part of any 
assessment process. 

5.3  Dynamic Changes in Ocean Circulation

Regional and local sea level change scenarios also 
should reflect dynamic changes in ocean circulation, 
ice sheet losses, and mass redistributions associated 
with ice sheet losses, though this information 
is very limited at present. Climate models have 
forecast the slowing of the overturning circulation 
in the Atlantic from warming seawater in the north 
Atlantic, introduction of fresh water from GIS, and 
other sources. These factors could slow the boundary 
currents along the US east coast and raise sea levels 
in the northeast (Yin et al. 2009, Yin et al. 2010). 
These changes are not entirely independent from ice 
sheet loss, and can exacerbate or attenuate rises in sea 
level, depending on the region. Climate models forced 
by the SRES A1B scenario reveal a potential slowing 
in the Atlantic meridional overturning circulation 
(AMOC) and regional thermosteric and halosteric 
changes (Yin et al. 2010). Dynamical SLR resulting 
from ocean circulation patterns could be additive to 
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the global mean SLR trend, creating even higher sea 
levels and potential coastal impacts in Boston, New 
York, and Washington, DC when compared to the 
Southeastern US (Yin et al. 2010). 

5.4  Other stressors related to Coastal Vulnerability

Coastal land use and landforms affect inundation 
patterns on the coast. In addition to the aforementioned 
factors, a number of local coastal processes determine 
the configuration of coastal landforms (e.g. beach 
profiles, sea cliffs, barrier islands, marshes, atolls, etc.; 
see CCSP 2009). Specific locations where these factors 
dominate coastal processes are difficult to integrate 
into scenarios of environmental change (Cloern 
et al 2011). They should at least be considered in 
determining vulnerability and impacts. These factors 
vary substantially among US coastal areas and include, 
but are not limited to: 

	 •  �Sediment supply to the coast and associated 
transport along the coast

	 •  �Elevation and range of tides
	 •  �Wave height, period, and slope of the shoreline 
	 •  �Sediment accumulation rates – physical and 

biogeochemical 
	 •  �Presence or absence and configuration of barriers, 

whether human-made or natural, to coastal 
flooding and to constraints on shoreline change 

	 •  �Permafrost decline – a unique driver of coastal 
elevation change in northern Alaska that controls, 
in some locales, the retreat of coastal bluffs.

6. Conclusions
Based on a large body of science, we identify four 
scenarios of global mean SLR ranging from 0.2 meters 
(8 inches) to 2.0 meters (6.6 feet) by 2100. These 
scenarios provide a set of plausible trajectories of global 
mean SLR for use in assessing vulnerability, impacts, 
and adaptation strategies. None of these scenarios 
should be used in isolation, and experts and coastal 
managers should factor in locally and regionally specific 
information on climatic, physical, ecological, and 
biological processes and on the culture and economy 
of coastal communities. Scientific observations at the 
local and regional scale are essential to action, but 
global phenomena, such as SLR, can influence those 
conditions creating unanticipated impacts at the local 
scale, especially over longer time horizons. Thousands 
of structures along the US coast are over fifty years 
old including vital storm and waste water systems. 
Thus, coastal vulnerability, impact, and adaptation 
assessments require an understanding of the long-term, 
global and regional drivers of environmental change.
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Sources for Appendix Definitions 

NOAA Center for Operational Oceanographic Products and Services 
http://tidesandcurrents.noaa.gov/est/faq.shtml#q1

American Meteorological Survey (AMS) Glossary of Meteorology 
http://amsglossary.allenpress.com/glossary 
Accessed October 27, 2011

National Geodetic Survey 
http://www.ngs.noaa.gov/GEOID/geoid_def.html 
Accessed October 27, 2011

NOAA AOML 
http://www.aoml.noaa.gov/phod/amo_faq.php  
Accessed April 27, 2012; NOAA 

CPC 
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#ENSO  
Accessed April 27, 2012; 

USGS Earthquake Hazards program 
http://earthquake.usgs.gov/learn/glossary/?term=subduction  
Accessed April 27, 2012

Glossary of Terms

Anomaly – A mean sea level anomaly occurs when the 5-month average of the interannual variation is greater 
than 0.1 meters (4 inches) or less than -0.1 meters. 

Atlantic Meridional Overturning Circulation (AMOC)  – The Meridional Overturning Circulation  (MOC) 
is part of the global ocean circulation responsible for large-scale (on the order of 1000 km), low-frequency 
(interannual to  multi-decadal), full-depth, meridional flux  of mass, heat and  freshwater. The Atlantic 
component of this circulation, the Atlantic Meridional Overturning Circulation (AMOC), has long been 
considered the dominant element of the MOC, in large part because the majority of water masses that compose 
the lower limb of the overturning circulation originate in the North Atlantic. (U.S. CLIVAR AMOC Planning 
Team, 2007: Implementation Strategy for a JSOST Near-Term Priority Assessing Meridional Overturning 
Circulation Variability: Implications for Rapid Climate Change. U.S. CLIVAR Report 2007-2, U.S. CLIVAR 
Office, Washington, DC, 20006, 23pp.)

Atlantic Multidecadal Oscillation (AMO) – The AMO is an ongoing series of long-duration changes in the sea 
surface temperature of the North Atlantic Ocean, with cool and warm phases that may last for 20-40 years at a 
time and with a difference of about 1°F between extremes. These changes are natural and have been occurring for 
at least the last 1,000 years.

El Niño Southern Oscillation (ENSO) – The ENSO cycle refers to the coherent, and sometimes very strong, 
year-to-year variations in sea-surface temperatures, convective rainfall, surface air pressure, and atmospheric 
circulation that occur across the equatorial Pacific Ocean. El Niño and La Niña represent opposite extremes in 
the ENSO cycle.
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Eustatic sea level rise – Eustatic sea level rise is a change in global average sea level brought about by an increase 
in the volume of the world ocean (IPCC 2007b)

Geoid – The equipotential surface of the Earth’s gravity field which best fits, in a least squares sense, global mean 
sea level.

Global mean sea level (GMSL) – Average height of the Earth’s oceans. Global mean sea level can change globally 
due to (i) changes in the shape of the ocean basins, (ii) changes in the total mass of water (see eustatic sea level rise 
below) and (iii) changes in water density. Sea level changes induced by changes in water density are called steric. 
Density changes induced by temperature changes only are called thermosteric, while density changes induced by 
salinity changes are called halosteric (IPCC 2007b)

Joint Probability Method – Joint Probability Method refers to flood risk calculations using multiple variables, 
such as waves, sea level, river flow, and rainfall, to develop probabilities of flooding.

Local sea level (LSL) – The height of the water as measured along the coast relative to a specific point on land. 

Mean Sea Level (MSL) – Refers to a tidal datum, or frame of vertical reference defined by a specific phase of the 
tide. Tidal datums are locally-derived based on observations at a tide station, and are typically computed over a 
19-year period, known as the National Tidal Datum Epoch (NTDE). The present 19-year reference period used 
by NOAA is the 1983-2001 NTDE. Tidal datums must be updated at least every 20-25 years due to global sea 
level rise. Some stations are more frequently updated due to high relative sea level trends.

Pacific Decadal Oscillation (PDO) – The Pacific Decadal Oscillation (PDO) is the predominant source of  
inter-decadal climate variability in the Pacific Northwest (PNW). The PDO (like ENSO) is characterized by 
changes in sea surface temperature, sea level pressure, and wind patterns (Mantua 1997).

Relative sea level (RSL) – The height of the sea with respect to a specific point on land. 

Steric (Halosteric & Thermosteric) – Sea level changes induced by changes in water density are called steric. 
Density changes induced by temperature changes only are called thermosteric, while density changes induced  
by salinity changes are called halosteric.

Subduction – Subduction is the process of the oceanic lithosphere colliding with and descending beneath the 
continental lithosphere.

Wind stress – The resistance per unit area caused by wind shear. For example, the wind stress on the sea surface 
applies a friction force that can drive ocean currents.

Wind stress curl – The vertical component of the (mathematical) curl of the surface wind stress. The large-scale, 
long-term averaged wind stress curl contains the principal information needed to calculate the wind-driven  
mass transport.
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