Simulations of Lake Processes and Their Effects on Precipitation Using a Coupled WRF-Lake Model

Jiming Jin and Hongping Gu
Departments of Watershed Sciences and Plants, Soils, and Climate
Utah State University

Yihua Wu and Michael B. Ek
Environmental Modeling Center, National Centers for Environmental Predictions
Outline

• Biases in reanalyzed lake surface temperature

• Coupling of WRF and a lake model

• Calibration and validation of the coupled WRF-lake model

• Lake-effect precipitation simulations

• Summary
Objective

Quantifying lake processes and their effects on local and regional weather and climate using the Weather Research and Forecasting (WRF) model coupled with a physically-based lake model.

Lake-Effect Snow
Difference Between the NARR LST and MODIS LST

Lake region mean

NARR: North American Regional Analysis

MODIS: Moderate Resolution Imaging Spectroradiometer Satellite data
Precipitation Simulations at 10 km resolution with WRF over the Great Lakes Region

February 2006

OBS- U. Delaware
87mm

WRF-MODIS
89mm

WRF-NARR
95mm
All the release versions of the WRF model do not include a lake scheme.

The lake surface temperature is provided by the forcing data for the WRF model.
A Physically-based Lake Model

- We have coupled a lake model into WRF

- This lake model is a one-dimensional water and energy balance model (Hostetler et al., 1993; 1994).

- The lake in the model is divided into 10 vertical layers.

- Ice fraction and snow on the ice are also considered in the lake model.
The average depth of Lake Erie is 19 m with a maximum depth of 64 m.
The average depth of Lake Superior is 147 m with a maximum depth of 406 m.
Processes Affecting Lake Surface Temperature

Atmospheric Forcing

Shallow Lake

Deep Water Forcing

Deep Lake
Calibration of Lake Physical Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddy Diffusivity</td>
<td>Ke</td>
<td>Ke increased by a factor of 10^2-10^5</td>
</tr>
<tr>
<td>Roughness length</td>
<td>1 cm</td>
<td>0.5 cm</td>
</tr>
<tr>
<td>Bathymetry</td>
<td>50 m</td>
<td>Actual data</td>
</tr>
</tbody>
</table>
Surface Temperature Simulations for Lake Superior

Station ID 45004

Surface Temperature (°C)

2001–2002

Sep Nov Jan Mar May Jul Sep Nov

Different lines represent various data sources:
- Red: WRF–Lake–New
- Blue: WRF–Lake–Old
- Green asterisks: MODIS–Obs
- Black: BUOY–Obs
Lake Surface Temperature Bias

NARR minus MODIS

Mean Bias = 4.0 °C

Winter (DJF), 2003-2008

WRF-Lake minus MODIS

Mean Bias = 0.2 °C

Winter (DJF), 2003-2008
Lake Ice Fraction Simulations

Observation

Dec

Jan

Feb

Simulation

Dec

Jan

Feb

Spatial Correlation

0.55

0.82

0.82

2003-2008
Winter Precipitation Simulations

2003-2008

OBS

WRF-Lake

WRF-NARR
Simulated Precipitation Bias

Precipitation Bias

(Domain Average)

- **Bias = 7.2 mm/month**
- **WRF-NARR minus OBS**

- **Bias = 4.3 mm/month**
- **WRF-Lake minus OBS**
Summary

- The coupled WRF-Lake model realistically simulates the lake surface temperature and lake ice fraction for the Great Lakes.

- This coupled model also reduces the biases in the lake-effect precipitation simulations and has a capability of dynamic simulations of lake-atmosphere interactions.
Acknowledgement

This project was supported by the NOAA Modeling, Analysis, Predictions, and Projections Program. Grant Number: NA090AR4310195.