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What is a Skill Mask?

A simple model for forecasting forecast skill

ICs: 20120609 -20120619

CFSv2 T2M Forecast CFSv2 Forecast w/Skill Mask Applied
CFSv2 seasonal T2m anomalies (K) NWS /NCEP /CPC CFSv2 seasonal T2m anomalies (K) NWS/NCEP /CPC
Nov—Dec—Jan 2012/2013 Initiol_conditions: 10Jun2012—19Jun2012 Nov—Dec—Jan 2012/2013 Initial_conditions: 10Jun2012=19Jun2012
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(Areas of expected skill less
than 0.3 are shaded in grey.)

e Skill Mask is Determined from Re-forecasts

* Average anomaly correlation skill over 1982-2009
* Function of initial month and lead-time

* Average AC skill < 0.3 is considered not skillful

From NOAA/NWS/NCEP/CPC (http://www.cpc.ncep.noaa.gov/products/people/wwang/cfsv2fcst/)



Data & Methodology

Data

e CFSv2 Re-forecasts (24 ensemble members per month, 1982-2009)
0,3, 6-month leads

* U.S.2m Temperature & Precipitation

Perfect Model Approach

 Withhold one ensemble member as “truth” and determine forecast using the other
23 members. Repeat for all members.



“Unconditional” or Average Correlation Skill
0-month lead CFSv2 Perfect Model Forecasts (1982-2009)

Temperature Pre<ipitation
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Conditional (Year-to-Year) Perfect Model Skill over U.S.

Fraction of Land Area >0.5 AC Conditional Skill
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Can we Predict the Skill Associated with the ENSO Signal?

yv(seas,year) = m(seas) ™ x(seas, year) + b(seas)

Forecast Skill Relationship between Index of ENSO Skill during

(Anomaly Correlation) | | ENSO & skill  ABS(Nino3.4) ENSO neutral
* ABS(PCs)
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correlation/factor of std)

Regression between Conditional Skill and Normalized ABS(NINO34) (units

0-month lead

Precipitation

Temperature
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variance Explained (%)
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PC1 PC2 PC3

PC Timeseries

“Canonical ENSO”

1985 1990 1995 2000 2005

“Trend and/or decadal
variability”

“Central Pacific ENSO”
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Regression between Conditional Skill and Normalized ABS(PC1) (units: correlation/factor of std)
0-month lead

Temperature Precipitation

rms=0.04 r=0.89 rms=0.03 r=0.91
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rma=0.05 r=0.82
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Global Regression Model RMSE Fit

Temperature Pre<ipitation
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Global

Correlation

Regression Model RMSE Skill
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Do ENSO-Conditional Masks Improve on Average Mask? No!

Differences in Modified Heidke Skill Score Winter

(Verified against obs)
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Does including Additional PCs improve Skill over Nino3.4 as Predictor? Not
systematically.

Temperature Heidke Skill Score Differences Winter
(Perfect Model)
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Nino3.4 is better predictor PCs are better predictor



1.

Conclusions

Including additional PCs that represent the trend and/or decadal variability,
as well as central Pacific variability of tropical Pacific SSTs does not offer any
systematic improvements over Nino3.4 in the ability to predict forecast skill
associated with ENSO.

The ENSO conditional skill mask does not improve upon the average skill
mask.

This is due to the fact that there are many more “equal chances” forecasts
using the conditional masks than using the average mask (not shown).

It is hard to skillfully forecast the forecast!



