
FY2016 Annual Report [Improved Probabilistic Forecast Products for NMME…] 1 

Final Report for Grant NA14OAR4310188 

Improved Probabilistic Forecast Products for the NMME Seasonal Forecast System 

Anthony Barnston1, Michael Tippett1, Huug van den Dool2, and Emily Becker2 

1International Research Institute for Climate and Society, Columbia University, 
Palisades, New York 

2Climate Prediction Center, National Centers for Environmental Prediction, National 
Weather Service, National Oceanic and Atmospheric Administration, College Park, 

Maryland 

Period of Activity: August 1, 2014 to July 31, 2017 

 

Table of Contents 

1. Results and Accomplishments.…...………………………………………….……………..........1 

2. Highlights of Accomplishments……….………………………………………………………….6 

3. Publications and Reports…………………………………………………………………………....6 

 3.1 Publications by Principal Investigators…………………………………….……..6 

 3.2 Other Relevant Publications…………………………………………………….……..6 

4. PI Contact Information..…………………………………………………….………………………...6 

5. Slides…………………………………………………….……………………………………………………7 

 

 

 

1. Results and Accomplishments 

The main purpose of the project is to improve the North American Multimodel 
Ensemble (NMME) seasonal probabilistic predictions. At IRI, improvements come 
about from statistical corrections of the prediction patterns of the individual 
constituent models before combining into the NMME forecasts. At CPC, 
improvements are derived through a local (non-pattern) calibration of the forecast 
probability distributions of the models separately at each location. Both aspects 
require the multidecadal hindcast history of each model, combined with the 
verifying observations. 

CPC Accomplishments  
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The work at CPC was focused on calibration of probabilities at individual grid 
locations. In a baseline approach, forecasts were corrected for bias in mean and 
standard deviation, which improves their skill and probabilistic reliability. Although 
these calibrations do not account for spatial pattern errors, which would be 
corrected with IRI’s CCA-based correction method, they are a standard that is 
already hard to beat. The skill and reliability diagnostics for the baseline was 
summarized in Becker and Van den Dool (2016). A table of probabilistic skill and 
reliability for surface temperature for the baseline method are shown in the top 
panel and the top table insert below the two panels in Fig. 1, indicating small but 
positive average skill, and adequate but not excellent reliability.  

The improvements are expected due to local calibrations of the probability forecasts 
consists largely of managing the histograms (the probability forecast distributions) 
shown on the right side of Fig. 1. For example, too-bold forecasts are damped when 
the probabilistic skill does not warrant the degree of deviation from the probability 
of climatology (0.333).  

The method for calibrating the local probabilities is a damping of probability 
anomalies as per a new verification measure called the probability anomaly 
correlation, or PAC (Van den Dool et al. 2017). The calibration is found to result in 
improvements in the Brier skill score and in probabilistic reliability analysis.  

A demonstration of the improvement in practice by the probability calibration was 
achieved using the seasonal forecasts of individual NMME models and of the NMME. 
Figure 1 shows reliability and forecast frequency histograms for short-lead 
forecasts of SST in the Northern Hemisphere by the CFSv2 model before (top) and 
after (bottom) the calibration of the probability anomalies. The calibration markedly 
improves the reliability for each of the tercile-based categories, as the lines come 
closer to the ideal y=x line. The frequency histograms show that the improvement is 
accomplished by damping the probability anomalies—i.e., making the forecasts less 
sharp, but not unduly so. The Brier skill score is also improved following the 
calibration (not shown). 

Figure 2 shows a similar reliability and forecast frequency analysis, but for all 
seasons and lead times combined, for the baseline for the NMME, for surface air 
temperature. Here the probability anomaly calibration has not been applied. 
Because the inherent predictability is much lower than it is for SST predictions, the 
sharpness of the forecasts is necessarily modest. The probabilistic reliability of the 
baseline is not perfect, but adequate, and it would be expected to improve following 
the calibration. This is indeed found to be the case (not shown). Fig. 2 is important 
in the sense that expectations should be realistic—i.e., f the attributes diagram looks 
fairly good already, the PAC based adjustment cannot be expected to yield a much 
better result.  

Figure 3 shows ranked probability skill score (RPSS) maps for NMME lead-1 
seasonal probability forecasts of 2 meter temperature over North America from the 
1982-2010 hincasts, uncalibrated (top) and PAC-calibrated (bottom). Areas of 
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negative RPSS (white) are removed, and areas with positive skill scores are slightly 
increased. RPSS maps for both uncalibrated and calibrated forecasts are created and 
posted alongside the realtime forecasts, for evaluation by the operational seasonal 
forecasters. 

Discussion with operational forecasters led to two adjustments in the final PAC-
based products. First, the forecasters desired forecasts over the oceans, not just over 
land. The solution was to use the Reynolds optimum interpolation (OI) SST data to 
represent the air temperature over oceans, to complement the surface air 
temperature over land. The observations then extended globally, allowing for 
training of the PAC on the global domain, and resulting in global calibrated forecasts. 
The second detail was with regard to the damping effect of the PAC calibration, 
resulting in some loss of forecast coverage, with the weakest forecast probability 
contour at 40% (as opposed to the “non-forecast” of 33%). The solution, at 
forecaster request, was to change the lowest contour shown on the new maps to 
36%. Following the two adjustments, forecasters were happy to regularly use the 
improved PAC-calibrated probability forecasts from the NMME. 

IRI Accomplishments  

At IRI, software was developed to correct individual coupled ocean-atmosphere 
models for systematic error in the spatial location and amplitude of large scale 
anomaly patterns, so that patterns in the uncorrected forecast could be modified in 
shape, strength and position simultaneously to better reflect the most likely 
corresponding observations. Canonical correlation analysis (CCA) was used for the 
corrections. Corrections are done on a regional basis, and then later concatenated to 
form a globally corrected forecast. Originally, 10 regions had been defined, but tests 
indicated that smaller regions result in more effective correction results, so 15 
regions were defined, as shown in Fig. 1. The regions vary in size in accordance with 
the size of the areas having common sets of responses to global climate signals, such 
as ENSO. Although such regions would ideally be varied seasonally, a best 
compromise was reached, weighting the seasons having greatest predictive 
potential most heavily. The 15 regions overlap to form transition zones having 
linearly varying weighting of regional inputs, resulting in a smooth final global map. 
Each model is processed individually, and the corrected forecasts of the models are 
then averaged into a multi-model forecast.  

Figure 2 shows the average correlation between the model precipitation forecasts 
and the observations before the CCA correction (left side), for forecasts of 
precipitation in January-March (top two rows) and July-September (bottom two 
rows). Results for two lead times are shown—one short lead (from early in the 
previous month), and one longer lead (from two months earlier than the short lead). 
In each panel, the bars show the results for each of the 8 models. The right side 
shows the change in the correlation following the CCA correction. Results show 
small improvements for some models for the winter forecasts, especially at short 
lead (top right panel), but improvements are seen to be generally modest. Individual 
examples of the spatial distribution of the correlation skill of the original model 
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precipitation forecasts, the forecasts after the CCA correction, and the change due to 
the CCA (not shown) indicate skill improvements in various subregions (or 
“pockets”) across the map, balanced by other subregions in which skill is degraded 
or left approximately unchanged.  

Table 1 shows the initial skill, averaged over all 8 models, and the change in skill 
associated with the CCA for each of the 15 regions, for winter precipitation forecasts 
made in early December. The changes due to the CCA correction vary by region, and 
average -0.02, showing an overall lack of improvement.  

A CCA correction for the entire globe as a single region, for the same season and lead 
time, results in a skill change of 0.000 – better than that for the merging of the 15 
regions. This was an unexpected finding, as intuition would suggest that when 
attention is focused on individual regions, including use of varying predictor regions 
and numbers of modes used in the CCA, results might be better.  

Table 2 shows a comparison of skills for precipitation forecasts for January-March 
and for July-September, each made at two lead times, first for the 15 regions treated 
individually and merged to cover the globe, and then for the globe treated as a single 
region. In all four cases, the single globe correction results in relatively better skill. 
Therefore, the single globe strategy was favored for most of the remainder of the 
project. Figure 3 shows the spatial distribution of correlation skill of the original 
model precipitation forecasts, the forecasts after the CCA correction, and the change 
due to the CCA, for the globe for the CMC1-CanCM3 model for early December 
forecasts of January-March. Overall improvement is small (mean improvement is 
0.029), but improvements are substantial in some subregions, such as the southwest 
and northeast US.  

While not shown, the CCA results in sizeable improvements in precipitation forecast 
skill in some regions having their rainy seasons during periods outside of northern 
hemisphere winter and summer. For example, useful improvements are realized in 
eastern tropical Africa and for Indonesia for forecasts for October-December made 
in early September. In both cases, predictability is known to exist in association with 
the ENSO state, and the CCA helps refine the positions and strengths of the 
precipitation response patterns across the region.   

Although the correlation was intended to be used as the main verification measure 
for the experiments, the root-mean-squared error skill score (RMSESS) was also 
used, to see if the CCA correction reduces local systematic errors even if errors in 
the placement and amplitudes of spatial patterns are not appreciably reduced. 
Figure 4 shows the RMSESS before and after the CCA correction, and shows a very 
significant improvement following the CCA. This suggests that the CCA is reducing 
errors that vary over small spatial scales—maybe even adjacent individual grid 
points—rather than varying over larger distances as expected with errors in the 
placement and amplitude of the coherent, large scale anomaly patterns. This 
unexpected result shows that the CCA is useful, but not in the anticipated manner. 
Table 3 shows the global average of the RMSESS before and after the CCA for 
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forecasts of two seasons made at each of two lead times. Dramatic improvements 
due to the CCA are noted for all four combinations of season and lead time. 

The experiment was also applied to temperature forecasts. Temperature is better 
forecast than precipitation, so skills before the CCA are at a higher starting point. 
Table 4 shows the starting skill and the skill change due to the CCA for each of the 
15 regions (and the globe as a single region), averaged over the 8 models, for 
January-March temperature forecasts made in early December. The CCA helps the 
skills for temperature forecast less than it does for precipitation, and only one or 
two of the 15 regions have a skill improvement due to the CCA. The average of the 
skill change over the 15 regions, and also for the globe treated as a single region, is -
0.07, showing that in an overall sense the CCA is not helpful for temperature 
forecasts for this season and lead time. Table 5 shows results for winter and 
summer temperature forecasts at each of two lead times, for a merging of the 
individually corrected regions and for the globe treated as a single region. Results 
are unfavorable for forecasts of January-March (as seen in Table 4), and less 
negative for July-September season, especially for the globe treated as a single 
region. Even in the best case—forecasts for July-September made in early June—the 
improvement is modest. 

The effect of the CCA on temperature forecasts is very different for the RMSESS 
(Table 6), where a dramatic improvement in skill comes about due to the CCA. 
Apparently, as also found above in the case of precipitation, the CCA is reducing 
errors that vary over small spatial scales rather than errors associated with 
placement or amplitude errors in the large scale anomaly patterns. The RMSESS 
improvement due to the CCA, and the final skill, is greater for temperature than for 
precipitation. Figure 5 shows the geographical distribution of RMSESS for 
temperature forecasts for January-March made in early December by the NCEP-
CFSv2 model before and after the CCA. Across much of the globe, initial systematic 
errors are very large before the CCA, and dramatically reduced after it. 

Examination of the correction of temperature forecasts was extended by using 
alternative temperature data sets—namely CAMS instead of GHCN-CAMS. Results 
using CAMS were relatively more favorable, but the CAMS data is inconvenient for 
operational use because of its large areas of missing data in various regions.  

A journal publication describing the results presented herein and in the final year’s 
annual report was submitted to the Journal of Climate (Barnston and Tippett 2017). 

The software used for the CCA-based forecast corrections has been sent to CPC, in 
case the researchers or forecasters are interested in probing further into its utility 
in reducing systematic local forecast error either using the CCA or a simpler method 
such as principal component regression or simple regression. 
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2. Highlights of Accomplishments 

• At NOAA/CPC, the probabilistic calibration method was tested, and found to 
result in substantial improvements in probabilistic forecast verification 
measures, including reliability. Therefore, the forecasts using the method 
have been deployed in CPC’s realtime NMME forecasts. 

• At IRI, systematic errors in individual coupled model forecast spatial 
patterns were corrected, resulting in skill improvements in specific regions 
and seasons, but modest results overall. However, improvements in an error 
score at a local (not pattern) level are substantial for both precipitation and 
temperature. The CCA was therefore found to be useful for an unintended 
purpose, as local corrections can be done using simpler methods than CCA. 
The software used for the CCA-based forecast corrections have been sent to 
CPC, should they be interested in using it or doing further work with it. 
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5. Slides 

 

 Figure 1. Reliability diagrams for the baseline (top) and adjusted (bottom) NMME 
hindcasts for Northern Hemisphere extratropics (23N-75N), for each tercile 
category. The x-axis shows forecast probability, and the y-axis is observed relative 
frequency. The black line shows ideal reliability, i.e., y=x. On right side are shown 
histograms of the frequency with which various forecast probabilities are issued for 
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each of the three categories, showing forecast sharpness. each bar is 0.1. 

  

Figure 2.  Top: Probabilistic skill score (Brier skill score) for baseline NMME 
hindcasts for 3-month average surface temperature for all seasons, spanning 1982-
2010 for the Northern Hemisphere extratropics (23N-75N), by tercile category and 
forecast lead time. Middle: Reliability diagram for the baseline NMME surface 
temperature hindcasts. See caption of Figure 1 for details about the diagram.  

 

 

 

 

Figure 3. Ranked probability skill score (RPSS) for uncalibrated (upper) and 
calibrated (lower) NMME probabilistic forecasts of 2 m temperature, lead-1 (MJJ) 
from April. Calibration is performed through the PAC method. RPSS is calculated 
based on the 1982-2010 hindcasts. 
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Figure 1. The 15 regions used for the CCA-based model forecast corrections. 
Overlap regions use forecasts from more than one region, which are averaged using 
linear location-based weighting. 
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Figure 2. Original anomaly correlation skill X 100 (left), and the change in skill due 
to the CCA (right) for the non-northern North America region for each of the eight 
NMME models for precipitation. From top to bottom, the results are for (row 1) 
January-March precipitation forecasts from early December, (row 2) January-March 
forecasts from early October, (row 3) July-September forecasts from early June, and 
(row 4) July-September forecasts from early April. The order of the 8 models 
(horizontal axis) is (1:CCSM4,  2:NASA,  3:GFDL,  4:GFDL-FLORA,  5:GFDL-FLORB,  
6:CMC1,  7:CMC2, and  8:CFSv2). 
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Figure 3. Geographic distribution of temporal anomaly correlation skill over the 
globe as a single region, for precipitation forecasts by the CMC1-CanCM3 model for 
January-March made in early December. The middle panel shows the original skill, 
top panel the skill after the CCA correction, and bottom panel the skill improvement 
due to the CCA (note the different scale for the bottom panel). 
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Figure 4. Geographic distribution of root mean squared error skill score (RMSESS) 
over the globe as a single region, for precipitation forecasts by the CMC1-CanCM3 
model for January-March made in early October. The top panel shows the original 
skill, and the bottom panel the skill following the CCA correction. The RMSESS is in 
terms of standardized anomalies with respect to the observed mean and standard 
deviation.  
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Figure 5. Geographic distribution of root mean squared error skill score (RMSESS) 
over the globe as a single region, for temperature forecasts by the NCEP-CFSv2 
model for January-March made in early December. The top panel shows the original 
skill, and the bottom panel the skill following the CCA correction. The RMSESS is in 
terms of standardized anomalies with respect to the observed mean and standard 
deviation. 
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Precipitation 
Region 

Initial 
Skill 

CCA: Skill 
Change 

Precipitation 
Region 

Initial 
Skill 

CCA: Skill 
Change 

N North Amer 0.05 0.03 South Africa 0.10 0.04 
S North Amer 0.18 0.01 NW Asia 0.10 0.06 
South Amer 0.15 -0.04 SW Asia 0.13 -0.06 
Greenland 0.06 0.05 NE Asia 0.09 -0.01 

Europe 0.07 -0.05 SE Asia 0.12 -0.06 
North Africa 0.07 -0.04 Indonesia 0.24 0.01 

W Trop Africa 0.01 -0.01 Australia 0.24 -0.14 
E Trop Africa 0.05 -0.16 Single Globe 0.114 0.000 

Table 1. Uncorrected anomaly correlation skill, and the change in skill due to the 
CCA, for precipitation forecasts for January-March made in early December, 
averaged over 8 models, for each of 15 individual regions and for the globe as a 
single region. The area-weighted average change in skill of the 15 individual regions 
is -0.02. 

 

 

Precipitation 
Start Target 

Original 
Model Skill 

Style Change 
from CCA 

Dec => JFM 0.114 Merge -0.023 
Single Globe 0.000 

Oct => JFM 0.084 Merge -0.008 
Single Globe 0.017 

    
Jun => JAS 0.086 Merge -0.013 

Single Globe 0.009 
Apr => JAS 0.065 Merge -0.007 

Single Globe 0.017 
Table 2. Comparison of the effect on globally averaged anomaly correlation skill of 
the CCA when performed on individual regions and merged to a global precipitation 
forecast, and when performed on the globe as a single region. Results are averaged 
over all 8 models, and are shown for forecasts for January-March made in early 
December and early October, and forecasts for July-September made in early June 
and early April.  
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Precipitation 
Start Target 

Global Avg 
RMSESS 

Before CCA 

Global Avg 
RMSESS 

After CCA 
Dec => JFM -1.31 -0.04 

Oct => JFM -1.32 -0.04 
   

Jun => JAS -1.17 -0.05 

Apr => JAS -1.15 -0.05 
Table 3.  Global average RMSESS for precipitation before and after the CCA 
correction. Results are shown for forecasts for January-March made in early 
December and early October, and forecasts for July-September made in early June 
and early April. 

 

 

 

 

 

Temperature 
Region 

Initial 
Skill 

CCA: Skill 
Change 

Temperature 
Region 

Initial 
Skill 

CCA: Skill 
Change 

N North Amer 0.25    -0.14 South Africa 0.40 -0.03 
S North Amer 0.27 -0.12 NW Asia 0.14 -0.23 
South Amer 0.37 -0.04 SW Asia 0.30 -0.01 
Greenland 0.43 0.00 NE Asia 0.14 -0.10 

Europe 0.18 -0.14 SE Asia 0.30 -0.07 
North Africa 0.35 -0.03 Indonesia 0.40 0.01 

W Trop Africa 0.42 0.00 Australia 0.20 -0.05 
E Trop Africa 0.38 -0.05 Single Globe 0.27 -0.071 

Table 4. Uncorrected anomaly correlation skill, and the change in skill due to the 
CCA, for temperature forecasts for January-March made in early December, 
averaged over 8 models, for each of 15 individual regions and for the globe as a 
single region. The area-weighted average change in skill of the 15 individual regions 
is -0.07. 
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Temperature 
Start Target 

 

Original 
Model Skill 

CCA 
Style 

Change 
from CCA 

Dec => JFM 0.273 Merge -0.070 
Single Globe -0.071 

Oct => JFM 0.233 Merge -0.045 
Single Globe -0.081 

    
Jun => JAS 0.311 Merge -0.030 

Single Globe 0.011 
Apr => JAS 0.264 Merge -0.024 

Single Globe 0.000 
Table 5. Comparison of the effect on globally averaged anomaly correlation skill of 
the CCA when performed on individual regions and merged to a global temperature 
forecast, and when performed on the globe as a single region. Results are averaged 
over all 8 models, and are shown for forecasts for January-March made in early 
December and early October, and forecasts for July-September made in early June 
and early April.  

 

 

 

Temperature 
Start Target 

Global Avg 
RMSESS 

Before CCA 

Global Avg 
RMSESS 

After CCA 
Dec => JFM -3.27 0.07 

Oct => JFM -3.29 0.05 
   

Jun => JAS -3.14 0.06 

Apr => JAS -3.15 0.05 
Table 6. Global average RMSESS for temperature before and after the CCA correction. 
Results are shown for forecasts for January-March made in early December and 
early October, and forecasts for July-September made in early June and early April. 

 

 


