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Purpose 

The purpose of the project is to investigate ways to improve the reliability and 
usability of the ENSO prediction plume product that began being issued at the 
International Research Institute for Climate and Society (IRI) in early 2002 
(Barnston et al. 2012). Improvements are expected through corrections of 
individual model mean bias and amplitude, and through refinement of the 
multimodel combining method. Finally, improvements will come through the 
formulation of a more realistically defined and easily understood probability 
distribution, including the user-friendliness of the format of the issued product(s). 

 

Results and Accomplishments 

 Research Phase 

The initial task in the project was obtaining hindcast data for a starting set of ENSO 
prediction models, including individual ensemble members for the dynamical 
models. It was decided to use the ensemble data from the models participating in 
the North American Multimodel Ensemble project (see Table 1). The hindcast data 
for the Nino3.4 index were created from these models and used for experiments 
targeting the above-mentioned improvements.  

 

Model Expanded model name No. ensemble 
members 

1. CMC1-CanCM3 Canadian coupled model #1 10 
2. CMC2-CanCM4 Canadian coupled model #2 10 
3. COLA-RSMAS-CCSM3 COLA/Univ. Miami/NCAR coupled model 6 
4. GFDL-CM2pl-aer04 Modified version of GFDL coupled model 10 
5. NASA-GMAO-062012 Modified version of NASA coupled model 12 
6. NCEP-CFSv2 NOAA/NCEP coupled model  24 
Table 1. List of models whose hindcasts are used in the initial research toward an 
improved ENSO prediction plume. 

 

A set of candidate methodological frameworks, and verification measures, were 
established so that experiments varying these would provide quality comparisons 
needed to make the set of decisions.  

A few of the basic design decisions for which the hindcast skill experiments were 
aimed, are: 

• Use of the NMME hindcast period of January 1982 to December 2010  
• Use of the 1˚ observed Reynolds and Smith OI-SST data set for verification 
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• Use of 1-month averaging periods. 
• For verification, cross-validation (c-v) design will leave out 1 year; non-c-v 

also will be used where appropriate  
• Verification scores will include temporal correlation and RMSE for 

deterministic forecasts, and RPSS if probabilistic forecasts are verified. 
 

The following list contains the specific methodologies for testing relative skills: 

• Value of weighting models by historical hindcast skill (correlation) 
• Choice of weighting by skill regardless of model-to-model forecast 

correlation, versus using partial correlations (as in multiple regression) 
• Whether (and how) to bias-correct individual models prior to consolidation 
• Role of ensemble number in weighting of individual models for forecast 

mean; should ensemble size be used as a weighting factor? 
• Method to establish uncertainty: hindcast skill (and its standard error) 

versus ensemble member spread for the forecast probability distribution  

In addition to determining the methodologies that deliver best predictive skill, 
another goal is to produce an ENSO prediction plume that most effectively shows 
the probabilistic predictions. Toward that end, we are experimenting with various 
choices of graphical formats. 

Initial experiments indicate, as also determined earlier by Tippett and Barnston 
(2008) and more recently by Delsole et al. (2013), that hindcast skill-based 
weighting of models usually does not help cross-validated skill when 30 or fewer 
years of hindcasts are available. The reason is that when the model skills vary by the 
amounts seen here for the NMME models—not sharply—skill differences are most 
likely related to sampling variability rather than to true model quality differences.  

The next, and perhaps most important, finding is the presence of significant mean 
model biases that vary widely among models, and often across forecast start times 
and lead times within an individual model. Some model producers do not remove 
the model’s own climatology from the forecasts to form anomalies, but may remove 
the observed climatology, leaving a substantial mean model bias. The effect of these 
varying biases is an increase in the spread of the model ensemble means, as often 
shown in the existing ENSO prediction plume. Figure 1 shows the plume issued in 
July 2013. We see that the model disagreements at short lead times, such as 1-3 
months, appear larger than expected, considering the skill levels at those leads. 
Figure 2 shows root-mean squared error (RMSE) skill score for the NMME ENSO 
forecast first without any mean bias corrections for individual models, then with 
bias correction, and finally with both bias and amplitude correction. The mean bias 
correction achieves a very noticeable improvement in the skill. Forecast amplitude 
is represented by the temporal standard deviation of the forecasts over the years, 
for a fixed start time and lead time. Correction of amplitude so that it equals the 
interannual standard deviation of observations multiplied by the cross-validated 
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hindcast correlation with observations, results in a slight further improvement in 
the RMSE skill score.  

Another finding of the hindcast experiments was that the ensemble spreads of the 
individual models are approximately constant from year to year for the same season 
and lead time (confirming the results of Kumar and Hu 2014), but have differing 
relationships to their respective expected skill, which is based on hindcast 
verifications. Thus, some models have spreads that are too small considering the 
uncertainty associated with their expected skill, while other models have spreads 
more appropriate for their expected skill. This finding suggests that model ensemble 
spreads may not be able to be taken literally in best estimating the uncertainty of 
the multi-model ENSO forecast. The fact that individual model ensemble means do 
contribute some skill, and the multimodel ensemble mean usually has still greater 
skill and value than the most skillful individual model, has been documented in 
Kirtman et al. (2014) and earlier studies. Probabilistic reliability is valuable, as the 
probability distribution is just as important as the best guess single deterministic 
forecast. The ensemble mean is expected, on statistical grounds, to be a more skillful 
forecast when the ensemble sizes of the individual models are allowed to act as 
weighting factors. Further, toward providing the most useful possible probability 
distribution, it is believed safer to generate the uncertainty distribution on the basis 
of the historical cross-validated hindcast skill of the multi-model system than on the 
basis of the probabilistically less realistic spread of the individual ensemble 
members of the models. A common method for using the historical skill to 
determine the optimum uncertainty distribution is to assume a Gaussian 
distribution. The Gaussian is a reasonable approximation for the distributions of 
tropical Pacific SST in the Nino4 and Nino3.4 regions, but not for SSTs farther east or 
in the far western Pacific or Indonesia. The optimum spread is then given by the 
standard error of estimate (SEE), which is a function of the hindcast correlation skill 
(cor):  

  

Using this formula, the spread of the forecasts of an individual model equals that of 
the standard deviation of the observations for the given season/lead when there is 
no forecast skill (i.e., the correlation=0), and becomes smaller as the individual 
model’s historical skill increases. The spread is always symmetric about the 
ensemble mean and remains the same, year to year, for a given forecast start time 
and lead time. As noted in the right panel of Fig. 2, amplitude correction is not as 
important as mean bias correction. 

On another research issue, analyses were conducted to determine the best method 
to formulate the optimum multimodel ensemble mean, regarding amplitude 
(deviation from average), as well as the width of the forecast probability 
distribution. Figure 3 shows the ratio of the skill-based standard error of estimate, 
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shown to the left of the “divide” sign, to the standard deviation of the members of 
the multi-model ensemble of the ENSO forecast (to right of “divide” sign):  

   

Here SDy is the standard deviation of the observed Nino3.4 index and corxy is the 
correlation between the hindcasts and the observations.  

For naturally good model calibration, this ratio should be close to 1. The first two 
panels of Fig. 3 show that the ratio substantially deviates from 1, particularly 
without bias corrections (left panel), but also for certain target periods near the 
northern spring ENSO predictability barrier after bias corrections but without 
amplitude corrections (middle panel). When both types of bias are corrected (right 
panel), ratios are more uniform across seasons and lead times, but average 
somewhat lower than 1, particularly for very long lead times (when the CFSv2 
model does not have forecasts) and seasons near the middle of the year that are 
affected by the predictability barrier. These results suggest that using the multi-
model ensemble spreads directly lead to less favorable probabilistic reliability than 
forecasts whose probability distribution are statistically derived from the hindcast 
skills, consistent with Goddard et al. (2013). Hence, a decision is made to use the 
hindcast performance-based standard error rather than the spread of the members 
to develop the forecast probability distribution. This decision is compatible with the 
finding in Kumar and Hu (2014) that model spread is quasi-constant from forecast 
to forecast for the same target season, lead time and model—i.e., the noise part of 
the signal-to-noise ratio remains about the same year to year in seasonal forecasts. 

Finding a user-friendly format for the ENSO predictions is an important goal of the 
project. To produce a forecast diagram that shows the probabilistic predictions most 
reliably and understandably, we experimented with various choices of graphical 
formats. Figure 4 shows a possible format in which the “best guess” single forecast is 
shown, while the uncertainty distribution about that forecast is shown using 
vertically oriented bell-shaped curves. Beyond the format, the figure shows the 
effects of mean bias correction and amplitude corrections on the hindcast for the 
2009-10 El Nino made in June 2009, when the event was just about to begin. The 
panels show the forecast, along with its uncertainty as represented directly by the 
MME ensemble spread as well as by the SEE that reflects the historical hindcast skill. 
In the top panel no bias corrections are done on individual models, and the MME 
ensemble spread is larger than the SEE-determined spread because the differing 
individual model mean biases artificially inflate the former. Correction of the mean 
biases leads to a much improved MME forecast (middle panel) and more realistic 
widths of the uncertainty distributions. Correction for the amplitude as well as the 
bias results in slight underestimation of the strength of the event, and 
underestimation of the amount of uncertainty at short leads. While the amplitude 
correction may have slightly degraded in this particular forecast, it would be 
expected to improve the RMSE of the forecasts, on average, in general.  
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Feedback on the above forecast format indicated that the vertically oriented 
Gaussian curves are often ineffective in communicating the uncertainty, as many 
non-climate specialists do not easily understand the meaning of the relative 
probability density implied by the curves. A format more similar to that of the 
existing plume, with horizontal lines or interval bands, was found to be more 
understandable to users.  

It is possible to generate a plume of equally likely scenarios for a prediction of the 
ENSO state from a given starting month, using a Gaussian random number generator, 
using the MME mean forecast in combination with the historical covariance of the 
errors over the hindcast period. The idea behind this formulation is that the forecast 
scenarios are not entirely “reset” with each increment in lead time; rather, errors at 
one lead time tend to persist to the next lead time (there is a positive correlation of 
errors between consecutive lead times). Hence, there is a matrix of error 
covariances for each lead time with each other lead time for any forecast start time, 
computed using all years in the hindcast period. This ability to generate equally 
likely realistic forecast scenarios can be used to create “spaghetti diagrams”. 

Figure 5 shows a number of options for expressing the forecast from June 2009, 
including its uncertainty distribution. In the upper left panel, the thick line showing 
the mean forecast is in the middle, among a family of lines showing various 
percentiles within the forecast distribution: 1, 5, 15, 25, 50, 75, 85, 95, and 99. This 
provides a wide choice of intervals that may matter most to various users. A similar 
product is shown in the upper right panel, except the more likely intervals are 
shaded with increasingly dark color. The two bottom panels both show the forecast 
mean, the 15th and 85th percentiles, and numerous randomly generated lines 
showing equally likely individual scenarios (100 on left panel, 200 on right panel). 
These equally likely forecasts have greatest density near the forecast mean, and 
lowest far from the mean. The bottom two panels most resemble today’s plume, 
showing individual model predictions, in that a dearth of specific probability levels 
is indicated and the user is left to surmise the probabilities largely by visual 
inspection. A reason for the better forecast description here, is that the new plots 
are equivalents to the forecasts of individual model ensemble members, while the 
lines on today’s plume plot are the ensemble means of the various models. The 
observation will be like a single ensemble member rather than like an ensemble 
mean.   

Analysis of the preferences of users, mostly non-climate scientists, based on 
informal interrogation, narrows the set of favored forecast formats to the upper 
right and lower left panels in Fig 5. In the lower left panel 100 lines are randomly 
generated under the constraints of the given skill level and error covariance, 
showing 100 equally likely individual scenarios. On that plot, user can get a sense of 
the probabilities largely by visual inspection, while in the upper right panel there is 
more explicit guidance on the forecast probabilities.  

A paper describing the technical aspects of the optimized prediction plume 
(Barnston et al. 2015) was published in Journal of Applied Meteorology and 
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Climatology. The main results evolving from the research of the current grant 
involved the importance of model mean bias and amplitude corrections, as well as 
the importance of a user-friendly product format was also introduced. 

The final choice of the format of the ENSO prediction forecast, based on the 
accumulated feedback from various users over at least two years, includes three 
plots, each showing aspects of the forecast distribution that partially differ from one 
another.  

The first choice (Fig. 6) is a graph showing the ensemble mean forecast of each 
model, and a thicker line showing the multi-model ensemble forecast. The latter is a 
straight average (i.e., using equal weighting) of the models. This graph, representing 
the most basic rendering of the forecast, was understandable to all potential users. 
It is also essentially the same as the existing plume diagram that has been popular. 

The second plot (Fig. 7) summarizes the overall forecast distribution, showing a set 
of percentile values (1, 5, 15, 25, 50, 75, 85, 95 and 99 percentiles) with descriptive 
color coding. The 50 percentile matches the multi-model mean forecast shown in Fig. 
6. This forecast format choice was valued most highly by users with a college degree 
having some level of understanding of the probabilistic aspect of the forecast. Many 
have advanced degrees in their field (e.g. hydrology, agriculture, climate, economics).  

The third forecast format (Fig. 8), sometimes called a spaghetti diagram, shows the 
forecast mean and the 15th and 85th percentiles, along with 100 lines randomly 
generated under the constraints derived from the multi-model mean forecast and 
the given skill level and error statistics of the NMME forecast. The error covariance 
governs the degree of persistence of the deviation of the scenario from the multi-
model mean forecast, making the scenarios statistically realistic. The lines represent 
100 equally likely forecast scenarios. This forecast format is desired mainly by users 
who think in terms of possible individual concrete scenarios, sometimes merely for 
a visual interpretation, and sometimes for purposes of assessing the likelihoods of 
various outcomes in their application (e.g., water management or agriculture) based 
on their historical data. The individual scenarios may be regarded as analogues by 
this set of users, even in the absence of this many actually observed analogues in the 
data archives. The choice of 100 scenarios is arbitrary, and could have been any 
number. Using many more than 100 creates a more crowded plot in which the lines 
near the middle of the distribution mainly overwrite one another and form a 
uniformly dark color. Figures 6, 7 and 8 are based on the forecast from July, 2016. 

 Operational Implementation Phase 

Following the research phase, a slightly larger set of NMME models had become 
available for real-time implementation. Additionally, several state-of-the-art non-
NMME models were added to the set of models to participate in the improved ENSO 
prediction plume. The final list of models is shown in Table 2. 
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Model Full model name (all are ocean-atmos. Coupled models) 
1. CMC1-CanCM3 Canadian coupled model #1 
2. CMC2-CanCM4 Canadian coupled model #2 
3. COLA-RSMAS-CCSM4 COLA/Univ. Miami/NCAR coupled model: CCSM4 from 2016 
4. GFDL-CM2pl-aer04 Modified version (as of 2012) of GFDL coupled model 
5. GFDL-CM2.5-FLOR-B Higher resolution GFDL model, lower ocean resolution 
6. NASA-GMAO-062012 Modified version of NASA coupled model 
7. NCEP-CFSv2 NOAA/NCEP climate forecast system coupled model  
8. ECMWF European Center, System 4 coupled model 
9. UKMO United Kingdom Met. Office coupled forecast model 
10. Meteo France Meteo France coupled forecast model 
11. JMA Japan Meteorological Agency coupled forecast model 
12. JAMSTEC SINTEX-F Japan Agency for Marine-Earth Sci. & Tech., SINTEX-F model 
Table 2. List of coupled comprehensive models whose real-time forecast are 
included in the improved ENSO prediction plume. The first seven are in the NMME. 

Routine real-time issuance of the three above-mentioned plot formats commenced 
at IRI in June 2016, on the existing schedule on which NCEP/CPC’s seasonal 
forecasts are released (the third Thursday of each month). The web page for 
accessing them is: http://iri.columbia.edu/our-
expertise/climate/forecasts/enso/current/?enso_tab=enso-nmme 

If NCEP desires to take on the responsibility of producing this set of monthly ENSO 
prediction plume products, the Matlab and Fortran software can be provided. While 
the new plume product is similar to the NMME ENSO plumes issued by Climate 
Prediction Center and the existing IRI/CPC ENSO prediction plumes, it offers a 
different perspective on the ENSO forecast through the introduction of the new 
formats. The new product may include a different set of models over the course of 
the coming months and years as model improvements or changes occur, or when 
some models are discontinued or new models are created. 
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Figure 1.  ENSO prediction plume issued by IRI and NOAA/CPC in July, 2013, for the 
periods of August-October 2013 through April-June 2014. Recent observed SST 
anomalies in the Nino3.4 region are shown by the black curves on the left side.  

 

 

 

 

Figure 2.  Root-mean-squared error (RMSE) skill score of the NMME ENSO forecast 
system as a function of forecast start month (x-axis) and lead time (y-axis) in the cases 
of no systematic error correction (left), individual model bias correction (middle), and 
both bias and forecast amplitude correction (right). Positive scores have lower RMSE 
than climatology forecasts.  
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Figure 3.  Ratio of ensemble spread (as standard deviation of all NMME ensemble 
members about the NMME ensemble mean) to the standard error of estimate (SEE) 
based on the hindcast correlation skill of the NMME, as a function of forecast target 
month (x-axis) and lead time (y-axis). Ratios are shown before forecast bias correction 
(upper left), after bias correction (upper right), and after both bias and amplitude 
correction (bottom). 
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Figure 4.  MME forecasts from June 2009 for the period of the 2009/2010 El Niño 
event. Top panel shows forecasts without any corrections, middle panel after bias 
correction, and bottom panel after bias and amplitude correction. The blue line and 
solid dots show the MME mean forecasts; the black line and dots show the observations. 
The horizontal ticks on the vertical line for each month show individual model 
ensemble mean forecasts. The thin blue vertical Gaussian distribution curves show 
forecast uncertainty based on the MME spread, and the thin red vertical distribution 
curves show uncertainty based on the hindcast skill-based standard error of estimate 
(SEE). 
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Figure 5.  Four possible formats for an improved ENSO prediction plume. All show the 
forecast made in June 2009 for the 2009-2010 El Nino episode where the models are 
corrected for mean bias but not amplitude bias (corresponding to the middle panel of 
Fig. 4). In the upper right figure, “less likely” and “more likely” refer to lower and 
higher probability density, respectively. See the text for details. 
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Figure 6. Ensemble mean forecasts of each of the seven individual models making up 
the NMME set, and the multi-model ensemble mean forecast (thicker purple line), 
computed using equal weighting of the means of the individual models. Forecast was 
made in July 2016 as the borderline La Nina of 2016 was just beginning. This diagram 
is updated each month on the web page given just below Table 2 above.  
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Figure 7. Summary of the overall uncertainty distribution for the July 2016 forecast, 
as described by key percentile values. The multi-model ensemble mean is shown, 
representing the 50 percentile, as well as four percentile values above it and four 
below it. Colors are darker in regions of greater likelihood of occurrence. This diagram 
is updated each month on the web page given just below Table 2 above.   
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Figure 8. “Spaghetti plot” showing the ENSO forecast made in July 2016. The blue line 
shows the multi-model ensemble mean forecast, the green lines the 15th and 85th 
percentiles of the forecast uncertainty distribution, and the purple lines 100 equally 
likely scenarios statistically calibrated using the historical forecast errors and their 
covariance among lead times. The purple spaghetti lines can be viewed as statistically 
generated “ensemble members” of the forecast system. This diagram is updated each 
month on the web page given just below Table 2 above.   

 


