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1. Introduction 
The proposed research is based on the hypothesis that the predictability of persistent large-

scale drought is due the competition of among three processes:  
(i) The nature of local coupled atmosphere-land feedbacks (i.e., strength, growth rate, 

saturation) 
(ii) The predictability limiting affects of atmospheric noise or stochastic forcing 
(iii) The remote forcing from low frequency global SST variability (e.g., AMO, PDO, 

NPO…). 
We propose to test this hypothesis through a series of modeling experiments that isolate the 
relative importance of coupled atmosphere-land feedbacks vs. atmospheric stochastic forcing 
vs. remote SST forcing. These experiments include using the novel interactive ensemble 
coupling strategy (Kirtman and Shukla 2002) previously used to isolate coupled ocean-
atmosphere feedbacks vs. atmospheric stochastic forcing applied to the problem atmosphere-
land interactions and novel numerical experiments were SSTA in specific regions are prescribed 
within the context of the coupled model. Part of our modeling strategy builds on the success of 
the US Clivar drought WG (http://www.usclivar.org/Organization/drought-wg.html) and the 
international Global Land-Atmosphere Coupling Experiment (GLACE) by explicitly leveraging 
their experimental protocol. We have chosen to focus on the question of North American 
drought because of its societal importance to US interests; however, the approach is equally 
applicable to terrestrial hydro-climate predictability on multiple space and time scales throughout 
the globe. 

To understand the predictability of North American drought we adopt the framework that 
was first developed to understand atmosphere-ocean feedbacks and apply it to atmosphere-
land interactions. To understand how we envision that adoption we note that Hasslemann 
(1976) hypothesized that mid-latitude ocean variability could be understood as the zero-
dimensional (0-D) red-noise thermodynamic uncoupled ocean mixed-layer response to white 
noise atmospheric stochastic forcing. More recently, Barsugli and Battisti (1998) generalized the 
Hasslemann (1976) hypothesis to include coupled atmosphere-ocean feedbacks, which further 
redden the response. Wu and Kirtman (2007) showed how the Barsugli and Battisti (1998) 
model could be applied to the tropics and used to understand air-sea feedbacks in coupled 
models (see also Wu et al. 2007). Indeed, there is extensive literature looking at the nature of 
air-sea feedbacks and how this is modified by ocean dynamics that is too large to adequately 
review here.  

Results presented here highlight: (a) the impact of atmosphere-land initialization in seasonal 
prediction experiments; (b) the predictability of southeast US drought from a multi-model 
prediction perspective and (c) modifications to the interactive ensemble coupling strategy that 
are specifically designed to diagnose atmosphere-land feedbacks. 

 
2. Results and Accomplishments 
 
a. Predictability of southeast US Rainfall 

Infanti and Kirtman (2014a) chose to focus on the 2006–07 dry period in order to examine the 
skill of the NMME system in hindcasting individual events. This period involved below-normal 
rainfall (phase 1), followed by a brief reprieve (phase 2) before a stronger period of below-
normal rainfall (phase 3), thus highlighting the need for seasonality within an event. This period 
was also studied by Seager et al. (2009), who found that the dry period was not accurately 
represented by a Global Ocean Global Atmosphere (GOGA) model using 6-month averages, 
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and the model failed to create a continuous drought. We believe that it is important to examine 
the seasonality of this drought as it highlights some of the prediction challenges. 

We have plotted southeastern U.S. precipitation plumes for the 2006–07 dry period in Figs. 
1a (February starts) and 8b (September starts). Figure 1a shows hindcasts initialized in (left to 
right) February 2005, 2006, and 2007, with lead time increasing along the x axis. Figure 
1b shows hindcasts initialized in (left to right) September 2005, 2006, and 2007. The blue line 
indicates the NMME ensemble mean anomaly, the red line indicates observed precipitation 
anomaly, and the gray lines indicate individual ensemble member anomalies. All anomalies are 
standardized (divided by standard deviation). Blue shading refers to phases 1, 2, and 3 of this 
drought. Anomalies are 3-month running means. It becomes apparent that observations show a 
brief below-normal period in early 2006 (phase 1), followed by a slight reprieve in mid-2006 
(phase 2), then a stronger below-normal period in early 2007 (phase 3). 

The plumes in Figs. 1a and 1b show constant range of ensemble members throughout all 
lead times and during the two hindcast initialization months; thus, the uncertainty at all lead 
times remains constant. We find good agreement between ensemble mean and observations 
during the first phase of the dry period when considering February starts (Fig. 1a, middle), and 
the ensemble mean stays neutral or weakly dry through phases 2 and 3. When looking at 
September hindcast initialization (Fig. 1b), there is less agreement between observations and 
the ensemble mean overall. September hindcast initialization shows some drying during phase 
1 of the drought (Fig. 1b, left) and captures the precipitation increase during phase 2 (Fig. 1b, 
middle), but remains wet throughout phase 3. There are ensemble members in all phases that 
appear close to observed, and the observations were not unpredictable by all ensemble 
members. 

We focus on the season closest to the observed driest or wettest season during each phase. 
This corresponds to FMA2006 (phase 1), ASO2006 (phase 2), and FMA2007 (phase 3). Figure 
2 shows the area-averaged precipitation from all ensemble members verifying in the above 
seasons at short and long leads versus observed precipitation. The precipitation anomaly in 
millimeters per day is given on the y axis. On the x axis, we have binned ensemble members, 
that is, bin 1 houses the first ensemble member from each model (nine ensemble members, one 
from each model), bin 2 houses the second ensemble member from each model, and so on until 
bin 24, which houses the twenty-fourth ensemble member from each model (only one model 
has 24 ensemble members available). Note that the number of ensemble members per bin 
decreases with higher bin numbers because of the varying amount of ensemble members 
available in each model. We have masked out ensemble members showing neutral rainfall and 
thus only focus on rainfall in the upper and lower terciles. The number of ensemble members 
out of 109 falling into upper and lower categories is noted in the bottom right of each panel. The 
red dotted line indicates the value of the observed precipitation anomaly. 

We find the best agreement during a short lead verifying in FMA2006 (Fig. 2, top left), with 
less agreement as lead time increases. The worst agreement occurs at a long lead verifying in 
FMA2007 (Fig. 2, bottom right), in which the NMME system shows predominantly wet 
anomalies in the Southeast region. We also find that the ensemble members that are able to 
capture below-normal rainfall during FMA2007 at a long lead do not capture the magnitude of 
the observed precipitation anomaly very well, with only a few exceptions. The majority of 
ensemble members show below-normal rainfall in ASO2006 at both lead times (Fig. 2, middle 
panels), though this period is only weakly above normal in observations, and its possible the 
NMME system is not capturing this accurately as the observed anomaly is small. 

We have plotted the NMME ensemble mean anomaly (most probable outcome) for FMA2006, 
ASO2006, and FMA2007 at short and long leads versus observations in Figs. 3a, 3b, and 3c, 
respectively. Figure 3a (FMA2006) shows similar results to previous figures, with good 
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agreement at a short lead, and slightly dry, but mainly neutral, precipitation at a long seasonal 
lead. ASO2006 (Fig. 3b) accurately captures the precipitation deficit off the coast of the United 
States with a slight wet anomaly inland, but is mainly neutral at both leads. This season did not 
show good skill at either lead time, so this is expected. Finally, we find that the NMME system 
does not accurately resolve the precipitation anomalies in FMA2007 (Fig. 3c) at a long lead, 
showing a predominantly wet anomaly at this lead time and very weakly dry precipitation at a 
short seasonal lead. 

Given this large tendency for above-normal precipitation during FMA2007 at a long lead, we 
also looked at the SSTA hindcast during this time period (Figs. 4a–c), as there is potential for a 
linkage to tropical Pacific SSTAs during the winter seasons. A more comprehensive analysis of 
SSTA skill in the NMME system is shown in Kirtman et al. (2014). Recall the results from Mo 
and Schemm (2008): cold (warm) ENSO brings dryness (wetness) in the Southeast in winter but 
brings wetness (dryness) in summer. In observations, we find cold SSTAs during phase 1, 
followed by warm SSTA in phase 2, and narrow, cold, more concentrated SSTAs in phase-3. 
We do not see a continual cold event in the tropical Pacific, and we find warm SSTAs in 
summer. 

We find that during FMA2006, ASO2006, and FMA2007 (Figs. 4a–c) there is good agreement 
during the short-lead periods in the tropical Pacific, but during the long-lead hindcast, there are 
neutral SSTAs in FMA2006 and warm SSTAs in FMA2007; thus, the SSTA hindcast during 
these two time periods was incorrect. It is not apparent that the incorrect SSTA was causing the 
incorrect precipitation forecast or was in fact coincidental. Additional research must be carried 
out to understand the complete reasoning behind the incorrect hindcast, which can be due to, 
for example, resolution of phenomena (e.g., Stefanova et al. 2012), overall model skill or error, 
or parameterization of relevant physical processes, because prediction does not rely exclusively 
on these teleconnections. 
 
b. Southeast US Rainfall Response to ENSO Diversity 

Research has shown that there is significant diversity in the location of the maximum sea 
surface temperature anomaly (SSTA) associated with the El Niño Southern Oscillation (ENSO).  
In one extreme, the warm SSTA peak near the South American coast (often referred to as 
Eastern Pacific of EP El Niño), and at the other extreme, warm SSTA peak in the central Pacific 
(often referred to as Central Pacific or CP El Niño).  Due to the differing tropical Pacific SSTA 
and precipitation structure, there are differing extratropical responses, particularly over North 
America.  Recent work involving the North American Multi-Model Ensemble (NMME) System for 
Intra-Seasonal to Inter-Annual Prediction (ISI) on the accuracy of prediction of the differences 
between El Niño events found excess warming in the eastern Pacific during CP El Niño events.  
Infanti and Kirtman (2014b) follows from this analysis and investigates the certainty of the North 
American response to the diversity of ENSO, focusing on regional land-based 2-meter 
temperature and precipitation.  Certainty in NMME predictions of North American precipitation 
and T2m is regional, and some regions, such as Southeast North America, demonstrate a 
strong connection to NINO3 precipitation and SSTA magnitude.  Other regions, such as the 
Northwest North America, demonstrate a weak connection to NINO4 precipitation and SSTA 
magnitude.  Still other regions do not show a strong connection between certainty and 
magnitude of tropical Pacific anomalies.   

Here we show some specific examples of the analysis given in Infanti and Kirtman (2014b). 
For example, Figure 5a shows the probability density function (PDF) of NINO3 and NINO4 
SSTA for all ensemble members and El Niño events, the x-axis is standardized.  Ensemble 
members are binned based on standard deviation away from the mean, e.g. Bin 1 contains all 
ensemble members within 0 and 0.5 standard deviations from the mean (neutral SSTA), Bin 2 
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within 0.5 and 1 standard deviations from the mean, and so on.  For all ensemble members in 
each bin, we find the corresponding North American regional precipitation, and plot resulting 
PDF (Fig. 5b-d).  Dark blue (red) dashed contours highlight the precipitation PDF corresponding 
to neutral (strong positive) SSTA.  Similar analysis, but binned according to tropical Pacific 
precipitation magnitude, is shown in Fig 6.  In this case, red to blue PDFs correspond to 
weakest to strongest tropical Pacific precipitation.  In terms of uncertainty, a centered, well-
dispersed PDF would be uncertain, a PDF that is, for instance, shifted toward positive values, 
would show certainty in a positive response. 

There is a clear linear relationship with NINO3 SSTA magnitude shown in Fig. 5b.  The 
precipitation PDF corresponding to strong positive SSTA is almost entirely positive (thus more 
certain about positive precipitation), more centered is the PDF corresponding to neutral SSTA.  
Also more centered are SE precipitation PDFs corresponding to NINO4 SSTA (Fig. 5d), with the 
exception of the PDF corresponding to neutral SSTA showing a positive mean.  Overall, 
however, precipitation corresponding to NINO4 SSTA does not show strong linearity.   

Similar analysis for NW precipitation is shown in Fig. 5c,e.  While there was some linearity 
between NINO4 SSTA magnitude and precent negative NW precipitation (Fig. 5b), this is not as 
apparent in this analysis.  NW precipitation PDFs corresponding to NINO3 SSTA (Fig. 5c) are 
similar regardless of which Bin considered, the precipitation PDF corresponding to neutral 
(strong positive) SSTA shows a slight shift in the mean from negative to positive.  NW PDF’s 
corresponding to NINO4 SSTA (Fig. 5e) are also similar to each other, we only see a hint of 
linearity in the left tail of the distribution, where the PDF corresponding to neutral SSTA is 
slightly less negative that the PDF corresponding to the strong positive SSTA.   

Figure 6a-e is similar, but binned based on NINO3 and NINO4 precipitation.  Additional Bins 
(1-8) cover the full range of tropical Pacific precipitation (Fig 6a).  The PDFs for SE precipitation 
corresponding to NINO3 and NINO4 precipitation are similar to the results for NINO3 and 
NINO4 SSTA.  The linearity and shift of the PDFs toward positive values for stronger rainfall is 
more apparent when considering the PDFs corresponding to NINO3 precipitation (Fig. 6b).  The 
PDFs corresponding to NINO4 precipitation show a shift toward positive values only in the mean 
of SE precipitation (Fig. 6d).   

NW precipitation corresponding to NINO3 precipitation again shows little linearity (Fig. 6c).  
NW precipitation corresponding to NINO4 precipitation shows a slight shift towards negativity in 
the mean for strong positive NINO4 precipitation (Fig. 6e).  Additionally, in the left and right tails 
of the distribution there is a shift toward more negative/less positive values as NINO4 
precipitation magnitude increases, more apparent in the right tail.  NINO4 precipitation explains 
significant variance of NW precipitation (Fig. 6b), however, for weak (strong) NINO4 
precipitation approximately 42% (35%) of ensemble members predict above zero rainfall. 
Implicitly, this means that for weak (strong) NINO4 precipitation approximately 58% (65%) of 
ensemble members predicted below zero rainfall.  While the slope is significant, these values 
are more neutral compared to, say, the SE, where for weak (strong) NINO3 precipitation 
approximately 45% (70%) of ensemble members predict above normal rainfall, and 55% (30%) 
below. 

Figure 7a,b show NINO3 (Fig. 7a) and NINO4 (Fig. 7b) NMME SSTA magnitude vs. percent 
of ensemble members predicting positive and negative rainfall during each defined El Niño 
event in each North American region.  NINO3 SSTA explains significant variance in the SW and 
SW, and NINO4 explains significant variance in the NW and NE.  Slope of the linear regression 
line is significant for NINO3 SSTA versus the SE (Fig. 7a), and for NINO4 SSTA versus GP, 
NW, SW, and NW, though variance explained is not significant in the GP and SW.  NINO3 also 
explains significant variance in the SW, but the slope is neutral, so it is likely that SSTA 
magnitude does not play a large role in precipitation agreement in this region.  Overall, 
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precipitation agreement in the SW, NW, and NE show the strongest relationship with tropical 
Pacific SSTA magnitude.  

The large explained variance and positive slope in the SE due to NINO3 SSTA indicates 
that as NINO3 SSTA magnitude increases, the agreement in predicting positive precipitation 
anomalies increases.  The expected impact during EP events is positive precipitation in the 
southeast.  In the NW, the larger NINO4 explained variance and negative slope is also 
optimistic, as the expected impact during CP events is negative in the region and the forecast 
agreement of negative precipitation anomalies increases.  The northeast is negative during CP 
events and mixed positive and negative during EP though we find a stronger relationship with 
NINO4 SSTA.   

For SSTA magnitude vs. T2m (Fig 7c,d) NINO3 SSTA explains significant variance in 
the SE, GP, and SW.  NINO4 does not explain significant variance in any region.  T2m is more 
closely related to anomalies in the NINO3 region, but the neutral slope in the GP, NW, and NE 
implies that magnitude does not exhibit a strong control on this variable.  Magnitude is important 
in the SW and SE for T2m.  The SW and SE are cold when there is NINO3 warming (negative 
slope).   

We conduct similar analyses using NINO3 and NINO 4 NMME precipitation versus precent 
positive/negative ensemble members in Fig. 8a-b.  Precipitation is perhaps a better proxy due to 
its control on atmospheric teleconnections.  This analysis further refines the above conclusions.  
When considering North American precipitation, there is significant variance explained in the SE 
by NINO3 precipitation and in the NW and NE by NINO4 precipitation.  The slope does not pass 
our significance test in any region, but are of the anticipated sign given the expected.  Similarly, 
for North American T2m, we find that NINO3 precipitation explains significant variance in the 
SE, GP, SW, and NE, but the slope does not pass our significance test.  We hesitate to state 
that there is no relationship between NINO3 and NINO4 magnitude and North American 
precipitation due to the lack of significance of the slope as there is still decidedly negative and 
positive slope shown for the given regions. The slope simply does not pass the current 
significance test. Lowering the significance level would change this conclusion. 

 
c. Atmosphere-Land Coupling in the Interactive Ensemble 

One of the proposed hypotheses for land-atmosphere interactions is due to stochastic 
forcing. In order to isolate the role of stochastic forcing we introduced the so-called interactive 
ensemble (Kirtman and Shukla 2002; Kirtman et al. 2003; Kirtman et al. 2005; Kirtman et al. 
2009; Kirtman et al. 2011; Lopez and Kirtman 2014). The interactive ensemble implementation 
developed for the NCAR family of models (CCSM3, CCSM4 and CESM1) uses multiple 
realizations of the atmospheric model (CAM) coupled to a single realization of the ocean model 
(POP), a single realization of the sea-ice model and a single realization of the land-surface 
model. The coupling of the multiple realizations of CAM to the single realizations of the other 
component models is accomplished through the CCSM coupler. The purpose of this coupling 
strategy is to significantly reduce the stochastic forcing of the ocean due to internal atmospheric 
dynamics. Ensemble averaging of fluxes of heat, momentum and fresh water produced by the 
individual CAM ensemble members before they are passed to POP effectively filters the noise in 
the fluxes due to internal atmospheric dynamics. Additional details can be found in Kirtman et al. 
(2009).  

Over the ocean this approach works well since the coupling is entirely through the fluxes and 
the ensemble averaging of the fluxes is found to due little damage to the mean state of the 
coupled system (see Kirtman et al. 2009, 2011). However, over the ice and land the coupling 
includes fluxes and state variables that are used by the component models to calculate fluxes. 
The ensemble averaging, therefore, has a disproportionately large effect on state variables 
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compared to flux fields, which ultimately leads to differences in the climatology of ice and land 
that are too large. For instance, over ice and land wind-dependent fluxes are calculated using 
the ensemble mean state (as opposed to flux) variables leading to strong biases over land and 
ice. We refer to this particular implementation of the interactive ensemble as “IE(mean 
coupling)” to emphasize that over land and ice the turbulent fluxes compared to the radiative 
fluxes are disproportionately affected by the ensemble averaging (see Fig. 9a). 

Our first approach to alleviate the problem was to focus on the atmosphere-land and 
atmosphere-ice coupling. In a second implementation of the interactive ensemble we isolated a 
single atmosphere for the atmosphere-land and atmosphere-ice coupling. Essentially, the root 
or the single atmosphere is fully coupled to the land and ice and the remaining atmospheres 
experience the land and ice state, but do not modify the land and ice properties through their 
fluxes. The other atmospheres are effectively de-coupled at the atmosphere-land and 
atmosphere-ice interface. This implementation of the interactive ensemble is referred to as 
“IE(one land)” to emphasize that over land and ice all coupling is via a single atmosphere (Fig. 
9b). 

Figure 9a shows the surface temperature bias (control minus interactive ensemble) for a 250-
year simulation using IE(mean coupling) and 9b shows the surface temperature bias for a 250-
year simulation using IE(one land). Clearly, the surface temperature bias is reduced with IE(one 
land), and in fact, we assert that the large surface temperature differences over the terrestrial 
northern Hemisphere are associated with a colapse of the Atlantic Meridional Overturing 
Circulation (AMOC) which could not be isolated with IE(mean coupling).  

 While IE(one land) clearly reduces the surface temperature bias, the de-coupled 
atmospheres are energetically inconsistence at the atmosphere-land and atmsophere-ice 
interface. This energetic inconsitency has the potential to significantly affect the variability (see 
Fig. 9a) in much the same way the prescribed SSTs artifically enhance simulated atmospheric 
variability over the ocean (e.g., Wu and Kirtman 2007). To remove the energetic inconsistency 
at the atmosphere-land and atmosphere-ice interface, we implemented a third version of the 
interactive ensemble where each atmospheric realization is coupled to its own land and own ice 
component models. We refer to this interactive ensemble implmentation at IE(multi-land) to 
emphasize that each atmospheric component is coupled to its own land and ice component 
models.  This third implementation removes the bias issue noted in Fig. 9 and removes the 
variability problem seen in Fig. 10a (see results in 10b). The large differnces in variability seen 
over South America can be confidently ascribed to the reduced SST variability in the IE 
simulations. These results are being prepared for publication. 
 
3. Highlights of Accomplishments 

- Completion of the first set of numerical experiments. 
- Diagnosis of how atmospheric noise impacts the externally forced rainfall response over 

North America. 
- Showed how land surface and atmospheric initialization impacts seasonal predictability and 

prediction skill 
- Examined the hindcast skill on the 2006-2007 Southeast US drought. 
- Developed new interactive ensemble coupling approaches to isolate land-atmosphere 

interactions 
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Tables and Figures 
 

 
 
Figure 1: NMME hindcast plumes for the period between February 2005 thru August 2008 for 
hindcasts initialized in (a) February and (b) September 2005. Hindcast is initialized at the 
beginning of each panel with lead time increasing along the x axis. Red lines show observed 
standardized (divided by standard deviation) precipitation anomaly, blue lines show 
standardized NMME ensemble mean precipitation anomaly, and gray lines indicate 
standardized individual ensemble member precipitation anomalies. Units are mm day−1 per 
standard deviation. Vertical shading represents phases 1, 2, and 3 of the 2006–07 southeastern 
U.S. drought. 
  



 12 

 
 
Figure 2: Area-averaged ensemble members vs area-averaged observed precipitation anomaly 
grouped by ensemble member. Only ensemble members with above- and below-normal rainfall 
are plotted; neutral ensemble members are masked out. Blue bars indicate precipitation 
anomaly for each ensemble member, binned according to ensemble member. Bin 1 is the first 
ensemble member from each model, bin 2 is the second ensemble member, and so on to bin 
24, the twenty-fourth ensemble member from each model (only one model has 24 ensemble 
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members available). Horizontal red dashed lines indicate the approximate observed 
precipitation anomaly. Units are mm day−1ranging from −3.0 to 3.0 on the y axis. The 
designation letters A and B indicate the number of ensemble members predicting above- or 
below-normal rainfall. For example, for FMA2006 at a short lead time, A = 7/109 indicates that 
7/109 ensemble members predict above-normal rainfall, and B = 66/109 that 66/109 ensemble 
members predict below-normal rainfall. 
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Figure 3: (left) Observed vs NMME ensemble mean precipitation anomalies for (middle) short 
and (right) long leads for (a) FMA2006, (b) ASO2006, and (c) FMA2007. Observed is plotted for 
phase 1 through phase 3 of the 2006–07 drought and has a color scale and contours ranging 
from −1.5 to 1.5 mm day−1 at intervals of 0.3, 0.5, 0.7, 1.0, 1.3, and 1.5 mm day−1. NMME 
ensemble mean verifies in the same seasons at the short and long leads and has a color scale 
and contours ranging from −1 to 1 mm day−1 at intervals of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mm 
day−1. The yaxes run from 15° to 50°N in increments of 5° and the x axes run from 130°W to 
60°W in increments of 10°. 
 
  



 15 

 
Figure 4: As in Fig. 3, but for SSTA.  
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Figure 5: a)  Probability density function of NMME NINO3 and NINO4 SSTA during defined EP 
and CP El Nino events.  Y-Axis shows probability density.  X-axis shows standardized SSTA.  
Bin 1 through Bin 5 refers to the ensemble members with NINO3 or NINO4 SSTA falling into 
neutral (0 to 0.5σ) to strongly positive (2 to 2.5σ) categories.  The amount of ensemble 
members included in Bin 1 for NINO3 SSTA is 97, Bin 2 is 386, Bin 3 is 162, Bin 4 is 30, and 
Bin 5 is 165.  The amount of ensemble members included in Bin 1 for NINO4 SSTA is 59, Bin 2 
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is 372, Bin 3 is 369, Bin 4 is 67, and Bin 5 is 1.  Note that due to the low amount of ensemble 
members in Bin 5 NINO4 SSTA, we do not include this Bin in the remaining analysis.  b) 
Probability density function for southeast Precipitation corresponding to NINO3 SSTA.  The PDF 
for Bin 1 includes the ensemble member precipitation corresponding to neutral (0 to 0.5σ) 
NINO3 SSTA.  The PDF for Bin 5 includes the ensemble member precipitation corresponding to 
strongly positive (2 to 2.5σ) NINO3 SSTA.  Dark blue to red color scale indicates PDFs 
corresponding to neutral to strongly positive SSTA.  Dashed contours indicate PDF 
corresponding to neutral or weakest SSTA (blue) and strongest SSTA (red).  c) As in (a), but for 
Northwest precipitation. d)  As in (a), but corresponding to NINO4 SSTA. e) As in (c), but 
corresponding to NINO4 SSTA. 
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Figure 6:  As in Fig. 5, but corresponding to NINO3 and NINO4 precipitation.  The amount of 
ensemble members in each NINO3 bin are as follows: 109, 291, 165, 72, 25, 28, 61, and 68.  
The amount of ensemble members in each NINO4 bin are as follows: 12, 112, 201, 292, 183, 
58, 13, 1.  Note that due to the low amount of ensemble members in NINO4 Bins 1, 7 and 8, 
they are not included in the remaining analysis.  Red dashed contours indicates PDF 
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corresponding to neutral or weak NINO3 or NINO4 precipitation, blue dashed contour indicates 
PDF corresponding to strongly positive NINO3 or NINO4 precipitation. 
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Fig. 7:  Percent of ensemble members agreeing on the sign of the anomaly for each North 
American region.  Left axis shows percent of ensemble members agreeing on above zero 
anomalies, right axis shows percent of ensemble members agreeing on below zero anomalies.  
X-axis shows NMME ensemble mean SST magnitude in degrees C.  a)  NMME NINO3 SSTA 
magnitude vs. North American regional precipitation percent correct.  b) As in (a), but for NINO4 
SSTA magnitude. c) NMME NINO3 SSTA magnitude vs. North American regional T2m amount 
correct.  d) As in (c), but for NINO4 SSTA magnitude. 
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Fig. 8:  As in Fig. 7, but plotted against NMME NINO3 and NINO4 precipitation magnitude. 
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Figure 9: (a) CCSM4 annual mean surface temperature difference control minus interactive 
ensemble [IE(mean coupling)] for a 250-year simulations. (b) CCSM4 annual mean surface 
temperature difference control minus IE(one land). 
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Figure 10: Difference in precipitation (mm per day) standard deviations for control minus IE 
(mean coupling) in the left panel and for control minus IE (multi land) in the right panel. 
 
 
 


