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Summary: 

This project has been the amendment to the main project entitled above.  According to the earlier 

planning Dr. Pedro Restrepo (previously at OHD and now at the NCRFC, Chanhassen, Minn.) was 

involved in this project to mainly provide assistance with the development of the Community Hydrologic 

Prediction System (CHPS) adapters within Flood Early Warning System (FEWS) framework developed 

at Deltares. Given his job relocation to North Central River Forecast Center (NCRFC) as a hydrologist in 

charge, more effort by Portland State University (PSU) was needed to meet the project objectives, hence 

more personnel support in the amount of $17,500 was requested.  

 

The modified research tasks for the 3rd year of the project were as follows: 

• Develop the model adapters for CHPS and integrate the data assimilation framework developed at PSU 

to the standalone CHPS system. 

• Incorporate the framework within the newly developed operational CHPS.  

 

1. Introduction-Data Assimilation 

Bringing ensemble data assimilation (DA) into the Community Hydrologic Prediction 

System (CHPS) is of high interest due to its applicability to hydrologic forecast initialization. 

Hydrologic forecasts are highly sensitive to initial conditions (i.e. soil moisture and snow water 

equivalent), and therefore accurate estimation of these states, and their uncertainty is vital to 

forecasts. DA refers to a range of techniques that may be used to ingest observed information 

into a model simulation to reduce uncertainty, and therefore improve the accuracy, of 

simulations. The DA adapter developed for FEWS/CHPS currently utilizes the Particle Filter 

(PF) developed by the PI and his research group. 

2. Particle Filtering 

Application of the PF requires viewing a hydrologic model through the state space 

framework, and applying the model in an ensemble framework. Within hydrologic models, states 

may be physically based (e.g. soil moisture or snow water equivalent) or conceptual (i.e. 

conceptual reservoir water content). For example, the Snow-17 model estimates the snow water 

equivalent, but the Sacramento Soil Moisture Accounting model estimates soil moisture as a 

series of conceptual reservoirs. Via the state-space framework, an ensemble simulation of a 

hydrologic model may be viewed according to equation (1). 
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In equation (1), xi,t represents the state vector at time t, which is the sum of the model (f(.)) 

estimate and the model error ωi,t. This model requires the true states at the previous time (xi,t-1), 

the true forcing data at time t (ui,t), and model parameters (θ) to characterize the land surface 

condition. It is often the case in hydrology that a subsequent model must be used to translate 

these model states into the observation space. A typical example is applying a hydrologic routing 

model to translate land surface water fluxes to flow at a watershed outlet, allowing for simple 

comparison of simulated and observed runoff. This model is referred to as an observational 

operator and is represented in equation (2). 

  tititi xhy ,,, ,                                         (2) 

where y i,t represents the forecast value, which is the sum of the observational operator (h(.)) 

estimate and the observational operator error ν i,t. The observational operator requires the true 

state value and true parameters (Ψ). Though θ and Ψ are identified as independent values/vectors 

in the above notation, in hydrologic model analysis, these may be examined in a combined 

vector, which can be represented as θ for simplicity. From this framework, the posterior 

distribution of the states, may be estimated through sequential Bayes Law. 

 Sequential Bayes Law is provided in equation (3). 
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In equation (3), N is the ensemble size, ty~  is the observation at time t,  1:1,:1
~|, tttN yxp   

represents the prior information (estimated with the model),  ttNt xyp ,|~
,:1  represents the 

likelihood and  1:1
~|~

tt yyp  is the normalizing constant.  

 In the PF, the posterior distribution is estimated as an ensemble, where each ensemble 

member is weighted after each observation becomes available. In its most basic form, a PF 

performs Sequential Importance Sampling (SIS). SIS propagates a Monte Carlo sample of 

potential states and parameters over a number of time steps. The posterior at each time step is 

represented by SIS through equation (4). At each time that an observation is available, the weight 

of each point in the sample is updated. In accordance with sequential Bayes Law, this posterior 

weight is the normalized product of the likelihood and the prior probability, as shown in 

equations (5) and (6). 
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Though SIS can theoretically estimate the posterior distribution at each time step in a hydrologic model, 

practically the sample will develop a few highly weight particles with many low weighted particles. This 

is referred to as weight degeneracy, and leads to a poorly representative sample. In order to avoid this 

scenario, resampling is typically performed, which replicates particles of high weights, and discards 

particles of low weights. Through resampling, all particles are kept within meaningful portions of the 

posterior, which leads to a more accurate representation of predictive uncertainty. 

3. FEWS/CHPS 

The Flood Early Warning System (FEWS) provides a framework for manipulating and 

passing time series information, intended for use in models used for flood forecasting. Within 

this framework, FEWS passes information across a “Published Interface”, via xml files, to allow 

the end-user to adapt any model to their system. This has been performed for the National 

Weather Service to create CHPS with the OHDFewsAdapter (documented at 

ftp://hydrology.nws.noaa.gov/pub/CHPS/For_Software_Developers/). This adapter is the 

insertion point in CHPS, translating the Published Interface files into a framework that is more 

conducive to running Office of Hydrologic Development (OHD) models. As shown in Figure 1, 

the OHDFewsAdapter takes the files passed through the Published Interface, “instantiates” the 

model driver, and then the driver passes any other necessary information through xml or text 

files to the models itself. This allows any model, whether or not it is written in Java, to be 

adapted to the CHPS framework. 
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Figure 1. Flow chart of FEWS and CHPS 

 

The DADriver is a driver developed to perform data assimilation based on a user configuration, 

which is capable of performing assimilation on any model adapted to CHPS. Configuration of 

the DADriver for an experiment is similar to setting up any other model that has a driver already 

developed for CHPS, but has some additional complications. A primary point is that a workflow 

within a data assimilation system will be treated as a singular module instance. For example, 

assimilation of snow into a basin with two elevation bands will only have 1 DADriver module 

instance for both snow17 model runs, but the DADriver will be directed to run both snow DA 

experiments. 
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4. Challenges of Bringing Data Assimilation into CHPS 

FEWS and CHPS are developed to run a single model simulation at a time. In order to make 

this system as modular, and therefore flexible, as possible, FEWS/CHPS pass much of their 

information through xml files. By passing information through xml files, via the FEWS 

“published interface”, a subsequent model can be adapted to an existing system, without any 

additional software development to FEWS or CHPS. The flow of data in the FEWS/CHPS 

system is shown in Figure 1. In this figure, xml files are used to pass information across the 

published interface, and between the OHDFewsAdapter and the actual model drivers.  

Data flow within a DA system differs from that of FEWS. As shown in Figure 2, the model 

simulations are performed in an ensemble loop, during each time-step. This requires the model 

simulations to be stopped at each time-step, and subsequent models run before moving on to a 

further time-step. Since FEWS ships whole time-series’ to a model, one at a time, updates in a 

sequential manner become quite challenging. If a model is to be run one step at a time, in an 

ensemble fashion, the computational demand will become excessive. Due to the number of xml 

files that need to be passed at each model run, for each ensemble member, it is infeasible to run 

ensemble simulations without significant software development on the CHPS side. This software 

development is described in following sections. 

 

Figure 2. DA flowchart 
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5. Development of Data Assimilation within CHPS 

The challenges mentioned above required the development of a new model driver. This is 

called the DADriver, and is a separate java class that takes on many functions of the 

OHDFewsAdapter. Utilizing the functionalities of the OHDFewsAdapter to pass files for 

multiple models, which was developed for the flash flood guidance (FFG) system, the DADriver 

can run multiple models simultaneously. This is advantageous, as multiple models may be 

required to perform the data assimilation. For example, streamflow assimilation will require, at 

the very least, a SAC-SMA and Unit-HG model. The DADriver instantiates each of these 

models, and runs them one time-step at a time, in an ensemble framework. This allows for 

assimilation of the observation at any time when one becomes available. With the input files 

passed to the DADriver, the DADriver instantiates and ensemble of model drivers, which it then 

provides information to and executes as necessary. Several differences between standard CHPS 

simulations and with the DADriver are listed in Table 1. 

 

Table 1. Comparison of standard simulations and DA simulations 

Standard Simulations DA Simulations 

OHDFewsAdapter ships data for model runs one at 

a time 

OHDFewsAdapter ships data for multiple model 

runs (similar to ffh) 

Each model’s driver performs simulation over the 

whole timeseries 

DADriver only gives data required to run driver to 

the next observation 

OHDFewsAdapter imports output data from single 

model 

OHDFewsAdapter imports data from all models 

involved in DA simultaneously 

 

In addition to the DADriver, a class for running an ensemble model was developed, which is 

called the StochasticModel. This class houses all of the instantiated models, and will run or 

manipulate the drivers when told to do so. Within this class, a sampling utility, named 

samplingUtils, will perform all of the error sampling necessary to run an ensemble simulation. It 

also applies the DA algorithm when an observation is provided, and performs the multi-model 

averaging in the event that multi-modeling is being performed. 
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Computational expense becomes an issue with very large ensemble sizes, which may be 

required based on the project setup. In order to reduce this demand, the DA system utilizes 

parallel computing to run ensemble members on separate processors. In order to achieve this, the 

ParallelOHDModelAdapter and ParallelOHDModel classes were developed, which relies on the 

Java ExecutorService utility. In addition, these classes skip some of the file writing required by 

the models themselves, further reducing computational demand. The ParallelOHDModelAdapter 

class sets up and starts the parallel computation, and the ParallelOHDModel class executes the 

specific class. More specifically, the ParallelOHDModel runs the model, ensures the states are 

properly set after the update, and then extracts the results from the driver. 

The final component of the DA system is the TransformationModelDriver. Since some of the 

workflows in the NWS forecast system require transformations (i.e. aggregation from hourly to 

daily flows) between models, and these transformations are only available within FEWS, these 

transformations are not available to the DADriver. Therefore, a TransformationModelDriver was 

added as a component to the DA system, to allow for transformations between model 

simulations. Only a small set of transformations are currently available in the 

TranformationModelDriver, and therefore may require further development if other 

transformations are desired. 

 

6. Features of Data Assimilation within CHPS 

DA with the DADriver allows for assimilation of any observation into any model that has been 

adapted to CHPS. Along with this report, several documents have been provided to describe the 

features of the DADriver, and its subsequent tools. Few specific experiments are explained 

below. These include creating a synthetic observation, basic streamflow DA (single model with 

single observation), and a complex data assimilation (multiple models and multiple observations) 

and how to load ensemble states into the DADriver for forecasting. Each of these features is 

controlled with input files, primarily the parameter file.  

 

7. Case Studies 

Some case studies have been performed to verify the utility of the CHPS Data Assimilation 

framework. These case studies have been performed in the Johnson Creek and Clackamas River 
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basins in northwestern Oregon, using observed precipitation and temperature data, estimated 

potential evapotranspiration data and model parameters provided by the Northwest River 

Forecast Center (NWRFC). Also, each of these case studies include a synthetic data assimilation 

experiment. Synthetic experiments serve as a proof of concept, to demonstrate the ability of the 

method with known error characteristics, and the real data experiments demonstrate the ability of 

the methods to improve forecasts in a real forecasting environment. 

Johnson Creek was selected for the first case study because it is rain dominated, and 

therefore does not require estimation of snow for accurate streamflow forecasting. In this basin, 

the NWRFC routinely provides forecasts of flow at the Sycamore gaging station (SYCO3). Since 

snow is not a major component, only the SAC-SMA model and the Unit hydrograph (Unit-HG) 

are required. In this case study, synthetic streamflow observations generated by running the 

model with over a three year period with the perturbed observed data, to simulate data errors, 

then perturbing the streamflow estimates to simulated model error. Then the particle filter (PF) is 

applied to the model over the same time period, in order to assimilate the observations, to 

retrieve the true (simulated with unperturbed data) streamflow. In this scenario, a one-timestep-

ahead (6-hourly) forecasting experiment is performed, where the synthetic observation is 

assimilated at each timestep, and the forecast at the following timestep is prepared. The 

comparison of the open loop (simulated with perturbed data), DA and true streamflow is 

presented in Figure 3. From this figure, it may be observed that the open loop simulation is 

biased low, in comparison to the true streamflow. After applying the PF, the forecasts are shifted 

towards the truth, indicating that the PF reduces error. Further evidence of this reduction in error 

is provided in Table 2, where the Mean Square Error (MSE) and bias are lower in the DA case 

than the open loop simulation. This suggests that the DA system is effectively improves short-

term streamflow forecasting when the error characteristics are known. 
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Figure 3. Synthetic streamflow forecasting experiments for Johnson Creek at Sycamore 

(SYCO3) 

 In order to demonstrate the effectiveness of the DA system in improving real forecasts, a 

real data experiment is shown in Figure 4. In this figure, the open loop is the model simulation 

without perturbed data, DA with the USGS gage measured streamflow observations, and the 

streamflow observations are compared. In this figure, the improvements due to DA are more 

modest than those of the synthetic DA experiment. This is to be expected as the model error is a 

greater factor, the observations are less frequent (daily) and the true error characteristics of the 

model are unknown. Although the improvements are not as great as the synthetic experiment, the 

forecast from DA is an improvement over the open loop simulations. This is further evidenced in 

Table 2, where the MSE and bias from DA is less than the MSE and bias from the open loop 

simulations. Therefore DA is capable of improving streamflow forecasts in a rainfall dominated 

basin. 
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Figure 4. Real streamflow forecasting experiments for Johnson Creek at Sycamore (SYCO3). 

 

Table 4. Comparison of RMSE and bias from both the synthetic and real data experiments 
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This project amendment was meant to facilitate the main project which is still ongoing. More 

case studies with detailed results and elaboration of the adaptors and real data assimilation with 

inclusion of multi-modeling will be reported. 

 


