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Results and Accomplishments:  
Numbers do not precisely correspond to those in the publication list because papers with related 
themes are grouped together. 
1) Lintner et al (2011) examines the origin of long tails in the probability distribution of water 
vapor that are associated with intense convective events. In previous work with microwave 
satellite retrievals, we had noted that there was a Gaussian core in the water vapor distribution for 
precipitating points, occurring just below the onset of strong convection, and serving as a 
quantification of quasi-equilibrium convection assumptions. However, at high water vapor, in the 
strongly precipitating regime, the probability of a given water vapor occurring did not fall nearly 
as quickly as would have been extrapolated from the Gaussian. Instead, there was a long, 
approximately exponential tail, implying that strong precipitation events occur much more 
frequently than would be expected from Gaussian statistics. A mathematical prototype for this 
was found in the physics and applied mathematics literature that suggested that such Gaussian 
core/exponential tail distributions can arise from passive tracer advection problems with the 
maintained gradient and certain flow characteristics. In Lintner et al. (2011) These relationships 
are examined in in situ data at the Atmospheric Radiation Measurement Project site at Nauru, 
which has a variety of instrumentation and in which radiosonde data can be used to look at the 
vertical structure and to confirm the important role of vertical advection in the physical processes 
producing the long tails. 
2) Stechmann and Neelin (2011) creates a stochastic model with the aim of capturing as much as 
possible in a simple prototype of the set of observed properties of the transition to deep 
convection that we have been assessing. It proves possible to capture not only Gaussian core and 
exponential tail properties of the water vapor distribution across the convective transition, but 
also the power law autocorrelation and power law distribution of rainfall event sizes. Having the 
relatively simple model permits one to compare, for instance, roles of a Markov jump process for 
convective initiation and Wiener processes for both the amplitude of precipitation sink and the 
driving by dynamical processes, in controlling various properties. This is done both numerically 
and by seeking analytic solutions of the Fokker-Planck equation in in limiting regimes. For 
example, the probability density function of precipitating points has a significant dependence on 
the Markoff onset process on one side of the transition but not on the other, suggesting which 
aspects of the climate model solution would be strongly affected by convective initiation that is 
not slaved to large-scale thermodynamic variables. Overall this work sets the groundwork for 
assessing the impact of potential modifications of convection schemes in climate models, and for 
understanding the observed distributions that lead to extreme precipitation events. 
3) If long tails are common in distributions of water vapor — and other atmospheric tracers, as 
noted in our earlier work — and having established the importance of advection across the 
maintained gradient, it is natural to hypothesize that similar long tails might occur in distributions 
of surface temperature. Ruff and Neelin (2012) shows that this is indeed common in observed 
surface air temperature traditions for daily average, daily minimum and daily maximum 
temperatures. The potential importance of this for the rate of increase of temperature extreme 
events above a given threshold under global warming is also demonstrated, indicating that it is 
important to assess climate models for these aspects of the simulated temperature distribution 
before making quantitative statements regarding the shifts of such distributions under global 
warming.  
4) Sahany et al (2012) examines a quantitatively very important feature of the transition to strong 
deep convection in the tropics: the physics that determines the onset boundary in a water vapor-
temperature thermodynamic plane. This curve separates strongly convecting from non-convecting 
regions of the thermodynamic plane, and has been determined empirically in prior work. Here we 
show: 1) a high resolution version of a recent revision of the Community Atmosphere Model does 
a reasonable job at capturing this onset boundary compared to observations; 2) that the physics of 



conditional instability in entraining plumes, such as it is included in the model parameterization, 
can capture this boundary — but only if the lower tropospheric entrainment lies within a certain 
range. This thus helps to set constraints for the representation of entrainment in climate models. 

5) Langenbrunner and Neelin (2013) evaluates the remote impacts on precipitation 
teleconnections of El Niño/Southern Oscillation in the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) ensemble, comparing the simulation quality to the earlier CMIP3 ensemble. 
Furthermore, it uses the simulation of this natural phenomenon for which we have observations to 
evaluate the type of statistics that are applied to global warming assessment. Although the model 
performance at the detailed spatial distribution of the teleconnection precipitation signal is far 
from perfect, the amplitude is reasonably well reproduced by the mean of the ensemble 
amplitudes (not the amplitude of the ensemble mean). And furthermore high agreement on sign is 
an impressively accurate predictor of the sign of the teleconnection signal. 

6) Neelin et al. (2013) evaluates an important aspect of North American precipitation change 
under global warming in CMIP5 simulations. One of the main features that has changed between 
the earlier CMIP3 and CMIP5 is the estimated change of precipitation in Central and Northern 
California, associated with a change in the storm tracks coming onto the coast (this feature also 
continues inland). The precipitation increases significantly in the current CMIP5 ensemble (at the 
96% level for a T-test for independent means). Even more interestingly this difference is a 
property of most of the individual models, not just of the ensemble itself (T-test for dependent 
means for models with both a CMIP3 and a CMIP5 version significant at the 99% level). 
Physically, this feature is associated with an extension of the Pacific jet onto the California coast. 
The jet extension increases winter storm rainfall onto the coast in the manner consistent with 
similar steering of storms that occurs during El Niño (although in the global warming case the jet 
change is not driven from the tropical Pacific). The model representation of rainfall changes in 
interannual variability validates reasonably well against observations, bolstering confidence in  
the models ability to simulate a significant step in this pathway. Overall, this should be viewed as 
identifying a significant contributing mechanism that can alter the location of the boundary 
between subtropical drying and mid-latitude precipitation increases. Other aspects of the 
hydrological cycle, including snowmelt and evapotranspiration changes must also be taken into 
account in assessment of regional impacts. 

7) Sheffield et al. (2013a,b) and Maloney et al. (2013) summarize the performance of the CMIP5 
models for current climate compared to observations over North America and their projections of 
climate change. Our group contributed to this MAPP program coordinated effort particularly in 
aspects regarding the hydrological cycle and projections of precipitation change. 

8) The Loikith et al. (2013, 2014) collaboration sets up a framework for evaluating the regional 
properties of surface temperature probability density functions, including longer-than-Gaussian 
tails such as had been identified in Ruff and Neelin (2012), described in the previous progress 
report. By using cluster analysis, Loikith et al. (2013) seek geographic regions that have similar 
PDFs, permitting compact comparison over regions in which the distribution is governed by 
similar dynamics. These distributions are evaluated in reanalysis products including the North 
American Regional Reanalysis, setting a target for model assessment. This paper was in 
preparation in the last reporting period and is now published. The Loikith et al. (2014) paper 
evaluates the characteristics of daily surface temperature pdfs in a six-member regional climate 
model (RCM) hindcast experiment against the same analysis in the reanalysis data sets. Some 
features including temperature skewness are reasonably well simulated by most RCMs, especially 
in the winter, suggesting confidence in the use of these models to simulate future temperature 
extremes. Aspects in which the models exhibit bias are also identified. 



9) The Li et al. (2014) collaboration combines sensitivity experiments in the NCAR CCSM with 
observational and CMIP analysis. The changes associated with the effects of precipitating 
hydrometeors on radiation, typically omitted in model convective parameterizations, exhibit a 
number differences consistent with biases in CMIP3 and CMIP5. 

10) Loikith et al. (2015) sets up a framework for evaluating the regional properties of surface 
temperature probability density functions, including longer-than-Gaussian tails such as had been 
identified in Ruff and Neelin (2012), described in a previous progress report. The Loikith et al. 
(2015) paper evaluates the characteristics of daily surface temperature pdfs in a six-member 
regional climate model (RCM) hindcast experiment against the same analysis in the reanalysis 
data sets. Some features including temperature skewness are reasonably well simulated by most 
RCMs, especially in the winter, suggesting confidence in the use of these models to simulate 
future temperature extremes. Aspects in which the models exhibit bias are also identified. 

11) Su et al. (2014) looks at global warming changes in cloud quantities, water vapor and of the 
Hadley circulation in the CMIP5 models. The change of the Hadley Circulation exhibits 
meridionally varying weakening and strengthening structures, physically consistent with the 
cloud changes. Measures of these in current climate help distinguish among models. 

12) Stechmann and Neelin (2014) leverages the related 2012 work, described previously, to 
establish theory for precipitation event size distributions, including controls on the probability of 
very large events. This helps to explain the nature of these distributions in initial observations, 
and sets up coherent targets for evaluation and understanding of these important extreme event 
measures in models. 

13) Sahany et al. (2014) looks at fast timescale measures of convective onset in the NCAR 
CCSM compared to observations and examines how these change under global warming. The 
onset boundary under global warming changes in a manner that is consistent with convective 
conditional instability for an entraining plume. The model's favorable comparison to observations 
in these measures helps to boost credibility of its simulation of changes under global warming, 
including the simulated increase in frequency of occurrence of events in the strongly precipitating 
supercritical range. 

14) Anderson et al. (2015) and Langenbrunner et al. (2015) address issues in quantification of the 
regional precipitation uncertainty in CMIP5 model projections of climate change. Principal 
Component Analysis and Maximum Correlation Analysis across the multi-model ensemble are 
used to identify spatial patterns and relationships among climate fields contributing to the leading 
sources of precipitation uncertainty, which commonly occur at the margins of major precipitation 
features. In the Pacific mid-latitude storm tracks, there is a coherent region of intermodel 
uncertainty in the precipitation where storms arrive at the West Coast of North America. This is 
closely related to changes in the jetstream in this region, highly consistent with a physical 
pathway involving the steering of storms, with the changes in the jet being set of very large-scale, 
despite the local scale of the precipitation impact. This work for projection of future rainfall is 
also coordinated with other NOAA funding on quantifying biases in current climate, in which 
similar patterns are found. 

 
 
 Highlights of Accomplishments:  
 
• Identification of physical mechanisms producing the long tails in the probability distribution 

of water vapor that are associated with intense convective events and producing a 
mathematical prototype for these 



• Establishing that long tails exist in the distribution of surface air temperature in observations, 
quantifying potential implications for changes in temperature extreme events under global 
warming and evaluating regional distributions in current climate 

• Investigation of a high-resolution climate model simulation to show that it captures the onset 
boundary of strong deep convection with reasonable accuracy and that this accuracy depends 
critically on representation of entrainment 

• Identifying physical pathways for the California precipitation change in the Coupled Model 
Intercomparison Project (CMIP) 5 under current climate and global warming scenarios.  

• Validation of CMIP5 ENSO teleconnections, including simulated amplitude of precipitation 
change in the main teleconnection regions and spatial distribution of the sign of the 
precipitation change 

• Contributions to evaluation of North American climate change and validation of CMIP5 
models for North American current climate as part of the MAPP CMIP5 Task Force.  

• Adding to the set of observations that help distinguish associations of deep convective 
circulations and hydrometeor/cloud contributions to both global warming change and current 
climate bias in CMIP5 models 

• Showing how measures of deep convective onset in observations, described previously, can 
help constrain a climate model convective parameterization, including in the range of 
allowable entrainment values, and add to confidence in simulated change of precipitation 
strong event statistics associated with long tails in the water vapor distribution for 
precipitating points. 

• Adding to understanding of the precipitation event size distribution, including controls on the 
frequency of very strong events. 

• Identifying key patterns of intermodel uncertainty in regional precipitation, especially 
impacting the US Pacific coast, and the association with other climate variables and physical 
pathways 

 
 
 


