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Introduction 

Agricultural productivity is highly dependent on climate variability and is thus susceptible to 
future changes including temperature extremes and drought. The latter is expected to increase in 
frequency regionally over this century. However, the uncertainty in projections of drought and its 
impacts on agriculture is high due to emission scenarios, climate model differences, uncertainty 
in initial/boundary conditions, and translation to regional scales. Climate models are unanimous 
in projecting future warming but differ in the magnitude and even sign of regional precipitation 
changes. They also differ in terms of extremes of temperature, precipitation and other 
meteorology. When projecting future impacts on crop productivity, these uncertainties are 
compounded because current crop models often use simplified treatments of climate response 
and do not include comprehensive treatments of water availability. Therefore, projections of 
regional climate change, variability and its impacts on water availability and agriculture are 
highly uncertain and reduction of uncertainties requires attention to all levels in the climate-
water-agriculture continuum.   

Rationale: Given the uncertainties in future agricultural production and the complex relationships 
between climate, hydrology and crop development, there is pressing need to make improved 
estimates of future changes in climate change and crop yields. We propose to evaluate the 
uncertainties in estimates of future changes in climate, water availability and agricultural 
production, and make improved estimates by incorporating state of the art knowledge of the 
relationships between climate, hydrology and agriculture into modeling and downscaling. This 
has ramifications for disaster preparedness and mitigation, policy making and the political 
response to climate change, and intersects with fundamental science questions about climate 
change, extremes and hydrologic cycle intensification. It is central to the mission of the Climate 
Program Office’s MAPP program to “enhance the Nation’s capability to predict variability and 
changes of the Earth’s System” and directly addresses its priorities to evaluate and reduce 
uncertainties in climate projections. This work will leverage from the PIs’ experience and 
ongoing activities in large-scale climate analysis and hydrologic modeling, particularly in 
changes in drought historically and under future climates, and agricultural modeling and 
relationships between climate and crop productivity.  

Results and Accomplishments 

Task 1. Quantify the relationships between hydroclimate variables and the implications for 
water, drought and agriculture. 

Proposed work: We will look at relations between soil moisture, temperature and other 
hydrologic variables in the context of drought and agriculture, leveraging from previous work by 
the PIs on drought occurrence, hydrologic anomaly propagation, land-atmosphere interactions 
and agriculture-climate relationships. This will draw from the suite of hydroclimate datasets 
(reanalysis, remote sensing, observational, off-line land surface modeling) described in section 
4.3.1. Key metrics that will be explored include precipitation-temperature-soil moisture 
relationships, factors influencing evaporation, the persistence of soil moisture, and the 
occurrence and severity of drought.  

Results:  



Uncertainty in large-scale drought variability 

We analyzed the NLDAS2 multiple land surface model (LSM) database (Xia et al., 2012) in 
terms of drought to understand the uncertainties in hydrological response derived from different 
LSMs (Sheffield et al., 2012a) that analyzed. Figure 1 shows a set of drought statistics from the 
four NLDAS2 models. The models are forced by the same meteorological dataset but show very 
different magnitudes and spatial variability of the statistics. We have previously shown this to be 
related to differences in the model definition of soil layers and depths and the parameters (Wang 
et al., 2011), as well as coupling between soil moisture and other hydrological components such 
as evapotranspiration and runoff (Sheffield et al., 2012b). We extended this analysis to other 
types of datasets including state-of-the-art reanalysis datasets, and evaluations over the US 
(Figure 2) indicate reasonable consistency with the NLDAS2 multimodel mean at large scales, 
although the datasets tend to diverge in recent years and on finer spatial scales, which is related 
to changes in observing systems that enter the reanalysis datasets.  

 

Figure 1. Multi-model comparison of drought statistics for 1979-2008 from the NLDAS2 LSMs. 
All models are forced by the same meteorological dataset. 



 

Figure 2. Time series of US averaged soil moisture percentile and area in drought for 1979-2010 
from the NLDAS2 multi-model ensemble mean and the four state-of-the-art reanalysis datasets. 

Land-atmosphere coupling in observations and constrained models. Land-atmosphere 
coupling is a key aspect of drought development but also a key uncertainty in coupled models, 
shaping relationships between soil moisture, temperature and precipitation through turbulent 
fluxes. We focused on analyzing land-atmosphere coupling in observations and off-line models, 
and used these results to evaluate climate models. We obtained observations from the Soil 
Climate Analysis Network (SCAN), which consists of 174 stations over the United States 
(Figure 3), including air temperature, precipitation, soil moisture and temperature for 5 layers. 85 
sites were chosen according to two criteria: 1) At least 2 years of data is available for the period 
of 2002-2009; 2) All data during 2010-2012 is available. Quality control, including automatic 
removal of outliers and manual checking was carried out for soil moisture for January 2002 to 
September 2009 by Liu et al (2011). Similar procedures were applied 2010-2012 data by 1) 
detecting step changes, 2) removing data when soil temperature is below 0oC and 3) removing 
unreasonable soil moisture values such as random oscillations.  

 



Land-atmosphere coupling was 
considered in terms of 
relationships between 
precipitation/temperature and soil 
moisture. We hypothesized that 1) 
precipitation and soil moisture are 
positively correlated under wet 
conditions; and that 2) temperature 
and soil moisture are negatively 
related under dry conditions when 
evapotranspiration starts to decline 
because of moisture limitation. 
Using the SCAN data we found 
that monthly precipitation and soil 
moisture are strongly positively 

correlated, with correlation highest for upper layers as expected. On a daily scale, we also 
quantified the lagged correlation between precipitation and soil moisture change, and a lag of 1 
day gives the highest correlation, and is positive for all soil layers except the lowest layer at 

100cm. Temperature-soil moisture relationships were also examined on different temporal scales 
for the summer months (JJA). In general, a negative correlation between air temperature and soil 
moisture exists at monthly and daily scale, but these relationships are noisy, especially at the 
daily scale. We also examined the relationship with the number of hot days (NHD) in JJA as an 
index of hot conditions. NHD is defined as the number of days that have air temperature 
exceeding the 90th percentile. NHD and monthly SM are negatively correlated for most sites and 
all soil layers with correlations generally insignificant in the east, increasing westwards and 
reaching a maximum in the western US (Figure 4). This is consistent with hot spots of land-
atmosphere coupling shown by models (Seneviratne et al., 2006) and seasonal precipitation and 
temperature data (Mueller and Seneviratne, 2012).  

We hypothesized that low soil moisture contributes to the development and maintenance of heat 
waves through reduced evapotranspiration, and explored the contribution of local heating from 
dry soil conditions versus temperature advection using a simple metric of advection based on the 

	
  
Figure 3. Soil Climate Analysis Network (SCAN) sites. 

	
  

Figure 4. Coupling between JJA soil moisture (SM – shown for the top layer) and number of hot days (NHD) for 
~80 SCAN sites. (a) Linear regression coefficients between SM and NHD. (b) Correlation coefficients between SM 
and NHD. Statistical significance is indicated by larger symbols.	
  

	
  



NLDAS-2 dataset. Figure 5 shows an example of the correlation between the NLDAS-2 
temperature advection and air temperature changes as estimated either from NLDAS-2 or from 
the local SCAN observations, for 12 sites in the central U.S. that show strong coupling between 
soil moisture and temperature. The NLDAS-2 results indicate that up to 25% of the variance can 
be explained by temperature advection for the hottest days suggesting that soil moisture 

feedbacks may be 
contributing to hot days, at 
least within the NLDAS-2 
dataset. The NLDAS-2 
versus SCAN results show 
low or negative correlation 
suggesting that 
inconsistencies between the 
NLDAS-2 and SCAN data 
(due to biases, scale 
mismatches, etc) obscure 
any potential relationships. 
This work is being written 
up as Xu and Sheffield, 
(2015). 
 

Task 2. Evaluate sensitivities of hydrologic and crop models to changes in climate and drought 

Proposed work: It is expected that differences in climate trends, climate variability, land-
atmosphere coupling and hydrologic persistence will lead to differences in key metrics of water 
and agriculture. This will be inferred from a set of experiments in which the hydrologic and crop 
models are driven by our existing observational meteorological dataset as well as synthetic 
experiments whereby plausible changes in climate mean, variability and drought persistence are 
imposed on the models. Statistical and process-based crop models will be run in their standard 
mode to evaluate the influence of historical climate variability and trends. Comparison of the 
statistical and process- based approaches will reveal if one approach is more or less sensitive to 
variations in temperature, precipitation, and/or soil moisture in the current model configuration. 

Completed work: Princeton was the lead on looking at sensitivities of hydrological models to 
changes in climate. We set up a multiple land surface model framework, which provides 
alternative models to the VIC model to help understand the sensitivities. We set up global 
simulations for two other models: CLM V3.5 and Noah V2.8 and upgraded CLM to V4 and 
Noah to V3.5, which are the latest versions. CLM and Noah were run for the global domain but 
were analyzed over the U.S. following similar procedures for our multi-model drought analysis 
for China (Wang et al., 2011). Figure 6 shows an example of the differences in modeled 
available water (precipitation – evapotranspiration) for multiple land surface models and for 
multiple precipitation forcing datasets.	
   In drying regions the uncertainties in trends are 
dominated by precipitation uncertainty, but uncertainties are decreasing. In wetting regions, 
uncertainties are about equal between model and precipitation uncertainty and uncertainties are 
increasing. This is, in part, due to increasing differences in precipitation datasets as the number 
of gauges declines.  

	
  
Figure 5. Correlation between (left) NLDAS-2 temperature advection and 
change in NLDAS-2 temperature and (right) NLDAS-2 temperature 
advection and change in SCAN temperature for 12 sites in the central U.S. 
for all days, warm days, and hot days (> 25oC). 



 
 

Figure 6. Uncertainty in the area of significant trends in P-E for multiple land surface models 
(open bars) and multiple precipitation forcing datasets (closed bars) for different regions. The 
trends are calculated for 30-year moving windows. 

 
To augment the work on crop models, we developed a simple crop model based on 

standard FAO methods using crop coefficients and stress factors for heat and water. Results for 
historic and future climate projections of agricultural productivity were presented by Sheffield et 
al. (2011) for sub-Saharan Africa.  
 
Task 3. Evaluate current climate models in how they replicate these observed relationships 

Proposed work: We will evaluate the CMIP5 20th century simulations at a variety of time and 
space scales for regions across North America, but with focus on agricultural regions. A set of 
impact relevant metrics will be examined, including the representation of drought and its drivers, 
relationships between temperature and soil moisture, and so on. The impact of identified biases 
will be further evaluated by forcing the hydrologic and crop models with raw climate model 
output (without downscaling or bias correction). Cluster analysis will be used to identify similar 
models that will aid in the reduction of uncertainties in later tasks. 

Completed work:  



Evaluation of CMIP5 Climate Models for U.S. Hydroclimate 

We downloaded and processed a suite of model outputs from the CMIP5 database for daily and 
monthly precipitation and temperature and for monthly hydroclimate variables 
(evapotranspiration, runoff, soil moisture and snow). The CMIP5 data were analyzed in terms of 
how well individual models represent observed (estimated from off-line LSMs) drought 
variability and relationships between hydroclimate variables. Figure 7 compares the CMIP5 
models with the VIC LSM in terms of drought frequency and shows large spread among the 
models. A handful of models show similar spatial variation in the drought statistics to the VIC 
model, albeit given the uncertainty in observational estimates from off-line models. Several 
models severely underestimate the frequency of short-term drought, which is related to 
underestimation of precipitation mean and variability. Figure 8 summarizes the evaluations for 
different regions in the US and puts this in the context of evaluations for global regions and 
compared to CMIP3 models. The CMIP3 and CMIP5 results are generally similar, with slightly 
less spread in the CMIP5 models. 

 



 

Figure 7. Comparison of drought frequency for (top) short (4-6 month) and (bottom) long-term 
(> 12 months) drought between CMIP5 models and the VIC LSM. 



 

Figure 8. Global and regional drought statistics for CMIP3 and CMIP5 models compared to the 
VIC LSM. US regions (western NA, central NA and eastern NA) are highlighted. 

 

The differences between the models and with observational estimates are partly due to 
differences in model persistence in soil moisture (Figure 9). Persistence is calculated as the 
average number of months that soil moisture is below or above the median and is generally 
higher in the Western US where climate variability is low and tends to persist in one state (wet or 
dry) for many months to years, and low in the eastern US where climate variability is high and 
droughts are broken quickly after a few months at most. Some models are able to capture the 
east-west gradient quite well. Many other models place the location of highest persistence in the 
central US.  



 

Figure 9. Persistence in soil moisture anomalies from VIC and selected CMIP5 models. 

Figure 10 shows the mean seasonal cycle of water budget components averaged over US regions. 
Compared to the VIC LSM, soil moisture tends to wet too early in CMIP5 models and has a 
larger dynamic range. The latter may be related to deeper soils, more precipitation, and more 
evapotranspiration in the climate models. Precipitation is too high in the west in the CMIP5 
models and evapotranspiration is generally too high, regardless of the modeled precipitation. 
Runoff is too low and the spring melt peaks too early. 

 

 



 

Figure 10. Mean seasonal regional water budgets for the VIC LSM and the set of CMIP5 models. 

We also looked at correlations between hydroclimate variables (Figure 11). In winter time, 
precipitation is well correlated with runoff over the southern 2/3 of the US in the VIC LSM and 
correlation rapidly drops off into Canada because of snow accumulation. The models do 
reasonably well at replicating this. The correlation between precipitation and evaporation is very 
low in VIC with some sublimation across the northern plains and Canadian prairies. However, 
the models show various patterns of higher correlation especially over the western mountain and 
eastern Canada. The correlations with soil moisture are consistent across models and with VIC. 
In the summer time, runoff is highly correlated with precipitation over much of the region. But 
the models vary in how they match this. Evaporation is highly correlated with precipitation in the 
drier southwest. The models mostly pick this up but some models have too strong coupling and 
too spatially extensive. For soil moisture, VIC shows high correlation in the east where there is 
plenty of water for evaporation. There are a wide variety of correlation patterns for soil moisture 
in the models, but they all pick up the higher correlations in the east. 

 



 

 

Figure 11. Correlation between precipitation and runoff, evapotranspiration and soil moisture in 
winter (top) and summer (bottom) for the VIC LSM and selected CMIP5 models. 



Part of this analysis contributed to three multi-author papers on evaluation of N. American 
climate simulations in CMIP5 models (Sheffield et al., 2013a,b; Maloney et al., 2013), including 
the evaluation of terrestrial water budgets against NLDAS-2 data and of extreme temperatures 
against the HadGHCND observational dataset.  

Following on from the synthesis analysis of CMIP5 model simulations for N. America, 
we have led the development of a Highlights and Outstanding Questions document that details 
significant differences between CMIP3 and CMIP5 for N. America. These differences were 
driven by queries from the staff of the National Climate Assessment to put the latest NCA, which 
is based on CMIP3 results, in the context of the latest CMIP5 results. The document highlights 
many aspects of N. American climate for which the CMIP5 simulations have not improved 
significantly since CMIP3 but other aspects for which the future projections have become more 
robust in terms of agreement among models. A key difference may the treatment of aerosols, 
which appears to be related to shifts in projected changes, such as for the line between wetting 
and drying which is further south in CMIP5 simulations. The document was delivered to NOAA 
as a technical report (Sheffield et al., 2014). 

Evaluation of CMIP5 Climate 
Models for Land-Atmosphere 
Coupling 
We also extended the work on 
analysis of land-atmosphere 
coupling by evaluating land 
surface models and coupled 
climate models in the same 
context. We evaluated land 
surface models from the 
NLDAS-2 dataset against the 
SCAN coupling results to test 
whether they reproduced the sign 
and spatial distribution of 
coupling between soil moisture 
and temperature (Figure 12). We 
developed metrics of land-
atmosphere coupling based on 
correlations between summertime 
mean soil moisture and 
evapotranspiration (ET) and 
normalized by the mean ET and 
bounded by -1 (strong 
atmospheric control - no 
coupling) and 1 (strong soil 
moisture control – coupling 

present). Figure 12 also shows the coupling metric calculated from averaging two land surface 
model datasets from the NLDAS-2 database, with distinct regions of low and high coupling in 
the southeast/Midwest and northeast, respectively, and transitional regions in the West. We also 

 

 

Figure 12. (top) Correlation between soil moisture and number 
of hot days from the Noah NLDAS-2 LSM. (bottom) Land 
atmospheric coupling metric and the sub-regions. Data shown 
are the average values of the NLDAS-2 Noah and VIC land 
surface models for JJA, 1979-2005. 



focused on two regions with intensive agricultural in the Midwest that are characterized by low 
and high coupling. 
Task 4. Estimate uncertainties in future projections of climate, drought and agriculture 

Proposed work: This task will determine the uncertainties using the cascade of models to 
ascertain the propagation of uncertainties through all levels of the climate-hydrology-agriculture 
continuum. We will strategically sample the cascade of different model permutations (taking into 
account low probability but high impact models) to provide an estimate of the full uncertainty 
that is obtainable from such a framework. We will decompose the uncertainties in projections 
into that attributable to scenario, model, and internal variance and apply this to relevant variables 
(such as temperature, precipitation, drought occurrence, crop yield) at various time and space 
scales.  

Completed work: We analyzed the CMIP5 
models in terms of 20th century evaluations 
and their future projections of drought. The 
results for the CMIP5 database indicate that 
soil moisture is projected to decline globally, 
similar to the CMIP3 data, but with slightly 
more uncertainty across models by the end of 
the 21st century. Figure 13 shows global 
average time series of multi-model CMIP5 
and CMIP3 20th and 21st century long-term 
projections for soil moisture and a set of 
drought characteristics. The shading 
represents the distribution across models. A 
few CMIP5 models project increases in soil 
moisture in high latitudes. Soil moisture 
generally dries for all models and there is a 
commensurate increase in all aspects of 
drought, such as increased drought frequency 
and areal extent. Drought tends to increase 
everywhere despite higher annual 
precipitation in some places (notably higher 
latitudes), because the seasonality of changes 
in climate and how it interacts with the surface 
hydrology is important. 

 We analyzed these results for the U.S. 
as a contribution to a paper on climate 
extremes on CMIP models (Wuebbles et al., 
2014) (Figure 14). There is consensus among 
the models for future summer soil moisture 
decreases throughout the U.S. and for winter 
soil moisture decreases in most of the 

	
  

Figure 13. Projected changes in soil moisture 
and drought from the CMIP3 and CMIP5 
climate models. 
	
  

!



CONUS. Comparisons of 
CMIP3 and CMIP5 twentieth-
century simulations against the 
off line hydrological modeling 
estimates indicate that the 
models on average capture the 
regional variation in drought 
frequency, although there  

are large intermodel variations 
and a tendency to overestimate 
longer-term drought frequency 
(Fig. 14). The latter is related 
to differences in modeled 
variability at interannual to 
decadal time scales and 
differing land surface 
representations 

Diagnosis of CMIP Model 
Projections 

We evaluated the CMIP5 
coupled models in their ability 
to represent the spatial 
distribution of surface climate 
and coupling and how this 
relates to future projections of 
soil moisture, drought and heat 

waves. In the historical period, models with lower precipitation have stronger soil moisture 
coupling in transitional regions (i.e. where there is relatively high evapotranspiration and it is 
controlled by soil moisture) that does not change much in the future. Those models that start with 
atmospheric control experience a decrease as the regime shifts closer towards becoming 
controlled by soil moisture.  

These drier models also start with higher mean near surface air temperatures and higher inter-
annual variability in temperature, whose distribution shifts farther to the right (higher increases 
in the mean), but the standard deviation is not substantially largely affected. These higher 
changes in temperature also translate in higher increases in the number of hot days as defined by 
a percentile threshold. This implies that shift in the inter-seasonal mean is responsible for 
changes in the distribution of intra-seasonal near-surface air temperatures. Figure 15 below 
shows an example of these kinds of relationships for the case of the Southeast. The top-left panel 
shows the results of a linear regression between the mean precipitation values during the 
historical period and the projected changes in mean precipitation (normalized by the changes in 
the mean monthly near-surface air temperature). Although the CMIP5 ensemble mean (i.e. large 
blue circle) is close to the NLDAS-2 ensemble mean (i.e. large green triangle), there is a wide 
spread showing both positive and negative biases in mean precipitation. This bias also relates to 
the future projections where drier models become drier and wetter models wetter. The top right 

	
  
Figure 14. (top) Evaluation of CMIP5 and CMIP3 models against 
offline land surface model (LSM) estimates of observed regional 
drought frequency (number of droughts per 30 yr) for (left) droughts 
that last for 4–6 months and (right) droughts that last for more than 
12 months. (middle) Distribution of projected changes in soil 
moisture percentile from (left) CMIP5 and (right) CMIP3 models for 
western North America. (bottom) Distribution of projected changes in 
drought extent from (left) CMIP5 (higher RCP8.5 scenario) and 
(right) CMIP3 (mid–high SRES A2 scenario) models for western 
North America. Drought is defined as soil moisture below the 20th 
percentile.  



panel also relates the bias to changes in drought frequency, where models that start drier project 
more frequent droughts. The bottom left panel shows a weak relationship between mean 
precipitation and mean near-surface air temperature during the historical period, where drier 

models are also hotter 
than the others. This 
relationship also 
translates to the 
models’ future 
projections, where the 
drier/hotter models 
project more severe 
heat waves than the 
wetter/cooler models. 
This work is being 
written up as Herrera-
Estrada and Sheffield 
(2015). 
 

 

Figure 15. Relationships between CMIP5 representation of historic mean 
summertime precipitation and future projected changes in mean precipitation, 
drought frequency, air temperature and heat wave severity for the Southeast 
region. 
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Task 5. Implement a set of methods to reduce uncertainties in future projections. 

Proposed work: Carry out statistical downscaling of climate model projections that impose bias 
correction at various levels of details of relevance to impacts. For example, current statistical 
downscaling techniques are often based on changes in monthly temperature and precipitation, yet 
changes at finer time scales and to other variables, may be equally large and may have 
comparable importance for impacts. For example, changes in diurnal temperature range, 
frequency of extreme precipitation events and surface radiation can all have profound impacts on 
hydrology, drought and agriculture, but are almost never included in downscaling. 

Completed Work: We upgraded and implemented our bias correction/statistical downscaling 
scheme (Li et al., 2010) on the CMIP5 database of model output. This scheme improves on 
previous methods that use quantile matching to bias correct climate model data by also taking 
into account the change in the distribution 
between the model historic and future 
periods, which has important implications 
for changes at the tails of the monthly 
distributions of climate variables. The 
scheme was implemented on 16 CMIP5 
climate models at 1.0-degree, 3-hourly, 
globally for 1901-2100 for the RCP4.5 and 
RCP8.5 future climate scenarios. Over 
15Tb of corrected and downscaled data 
have been produced. 

We set up the bias-correction and 
downscaling procedures for high-
resolution climate grids for the U.S. at 
1/8th-degree and daily resolution. This was 
applied to 16 CMIP5 climate models to 
produce daily precipitation, temperature 
and wind speed for 1901-2100 for the 
“historical” and RCP85 scenarios. This 
data was used to force the VIC model for 
the central U.S. and the soil moisture 
output contributed to an analysis of yield 
sensitivities to future climate and CO2 
change Urban et al., 2014). Figure 3 shows an example for the central U.S. of the original and 
bias-corrected/statistically downscaled precipitation data for the CCSM4 climate model. 

Reducing uncertainties in future projections 

	
  
Figure 16. Example of the bias-correction and statistical 
downscaling (BCSD) for the CCSM4 climate model. (a) 
NLDAS2 observational monthly mean precipitation. (b) 
CCSM4 simulated monthly mean precipitation. (c) BCSD 
CCSM4 monthly mean precipitation. (d) Example of 
BCSD CCSM4 daily precipitation  
	
  



 

Figure 17. Boxplots of the characteristics of extreme events for each model averaged across the 
entire region. The models were ranked based on the mean of the relative errors in mean MAM 
precipitation, mean JJA precipitation, and the coupling metric. The top 5, 10, 15 and the bottom 
5 models were used to recreate the boxplot to compare with the one where all of the models are 
considered. 

On the basis of the CMIP5 model evaluations of historic simulations and the relationship with 
future projections, we analyzed sub-ensembles of models that showed better or worse 
performance for a set of land hydrology and land-atmospheric metrics. Figure 17 shows an 
example of how uncertainty in projections of extremes (drought, heatwaves and compound 
events) varies with selected sub-ensembles. In general, the top 5 models tend to exhibit reduced 
uncertainty in the projections, but there are exceptions such as for drought frequency. Part of the 
reason for this is that models are not universally better for all regions. These results have been 
analyzed relative to the sampling uncertainty for sub-ensembles to understand whether selected 
sub-ensembles can be identified by chance. This work forms the last part of Herrera-Estrada and 
Sheffield (2015). 
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