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Project Overview 
 
Land surface evapotranspiration plays a central role in the water, energy, and carbon cycles. 
It provides the link between the energy and water budgets at the land surface and the link 
between the water and carbon cycle through vegetation transpiration. Accurately modeling 
terrestrial evapotranspiration processes is fundamental to numerical weather prediction, 
seasonal forecasting, and global circulation models. The goal of this project is to analyze, 
evaluate, and improve land evaporative processes in the NOAH land surface component of 
the NCEP Global Forecast System (GFS) and Climate Forecast System (CFS). The focus 
is on warm season terrestrial evaporative processes including: free evaporation from water 
bodies and canopy intercepted precipitation, evaporation of soil water, and transpiration by 
vegetation. This has been achieved in this project through the following tasks: 
 
Task 1: Data set selection and compilation  
Task 2. Generation of off-line model runs 
Task 3: Diagnostic analyses for assessing process deficiencies 
Task 4: Developing and testing new ET parameterizations 
 
It was also recognized during the course of the research that parameters that impact the 
turbulent latent heat fluxes are also relevant to the turbulent sensible heat fluxes, and 
accuracy in parameterizing evaporative (latent heat) processes are critical to the sensible 
heat parameterizations.  This is especially true for the aerodynamic resistance 
parameterization, which is discussed under Tasks 3 and 4.  Thus, a Task 5 was added, 
namely: Developing and Testing new Sensible Heat parameterizations. 
 
Results and Accomplishments 
 
Task 1: Data set selection and compilation 
 
To determine the weaknesses in Noah’s evapotranspiration module, a special emphasis is 
placed on minimizing the uncertainty in the model input meteorological data and observed 
latent heat fluxes. The FLUXNET global network of eddy covariance towers provides a 
wealth of high quality information that helps accomplish this goal. FLUXNET is an active 
global network of meteorological sites comprised of over 650 sites in 30 regional networks 
covering 5 continents. These sites measure the exchange of water vapor, carbon dioxide, 
and energy between terrestrial ecosystems using the eddy covariance method [Baldocchi, 
2008]. In an effort to provide a dataset that can be used by the global earth science 
community, the FLUXNET community has harmonized, standardized, and gap-filled these 
sites to create the La Thuile dataset. This summary database contains 253 eddy covariance 
stations with a total of 960 site-years of data at a 30-minute time resolution [ORNL DAAC, 



2013]. This data is invaluable for land surface modeling as it provides high quality input 
data including incoming shortwave and longwave radiation, air temperature, wind speed, 
specific humidity, and precipitation. But more importantly, it provides data to diagnose the 
land surface model output including latent heat, sensible heat, net radiation, ground heat 
flux, surface friction velocity, and outgoing longwave radiation, among others. Figure 1 
shows the spatial coverage of the La Thuile dataset over the globe and the number of years 
of data available per site; the average temporal coverage per site is ~4 years. To minimize 
misinterpretations of the model results, the model input meteorology and observations of 
latent heat are thoroughly quality controlled. 

 
Figure 1. Map of the 253 eddy covariance sites in the FLUXNET La Thuile dataset. Each sites’s 
color represents the number of years of data available. 

Task 2: Generation of off-line model runs 
 
The high quality FLUXNET dataset is then used to run the Noah land surface model run at 
each eddy covariance site using the local meteorological data. For these simulations the 
model is run using the default Noah evapotranspiration module and the default model 
parameters. The 30-minute latent heat simulations at each eddy covariance station are then 
compared to the quality-controlled observations. To adequately determine model 
performance, the biases in the temporal mean, temporal standard deviation, and linear 
correlation are assessed. These different metrics are then combined via the KGE metric to 
provide a summary of the Noah land surface model’s performance. The results as shown 
in Figure 2 illustrate how the model captures well the linear correlation with the default 
parameters. This result is due to the model’s ability to capture the seasonal and diurnal 
cycles. There are substantial biases in the temporal mean and standard deviation for many 
of the stations in FLUXNET. This illustrates uncertainties in either the model 
parameterizations or the model parameters.  
 
Task 3: Model experiments for assessing process deficiencies 

Model Parameter Sensitivity – The uncertainty in Noah’s latent heat estimates is driven 
by the large number of uncertain model parameters. However, each model parameter will 
have a different impact and contribute in different aspects to the model biases. A 
potential path forward is to tune the model parameters to improve model performance. 



However, given the limited number of eddy covariance sites, tuning all the model 
parameters at each site appears to be ill advised. To address this concern, we first seek to 
reduce the number of tunable model parameters by identifying the most sensitive 
parameters. The model parameters that we determine to be insensitive can be ignored 
since they don’t contribute heavily to the model biases. To determine the sensitivity of 
the model parameters, we use the Sobol sensitivity analysis. Prior studies have 
successfully used this technique to discern the role of the Noah model parameters at a 
limited number of sites [Rosero et al., 2010; Hou et al., 2015].   

 

 
Figure 2. The Noah land surface model is run at 130 eddy covariance sites in the FLUXNET 
network using the default and optimized parameters sets. The four panels show - via histograms - 
the difference in model performance before and after parameter optimization. The upper left panel 
shows the bias in standard deviation, the upper right panel shows the bias in the mean, the lower 
left panel shows the linear correlation, and the lower right panel shows the KGE metric derived 
from the other three components.  

The Sobol sensitivity analysis [Sobol 1993, 2001] is a global method that 
decomposes the variance of the model output Y into contributions from each parameter Xi 
and its interactions with other parameters. The first-order index Si represents the expected 
reduction in variance if parameter Xi were fixed, not accounting for interactions with 
other parameters. The total-order index STi represents the reduction in variance (V~i) that 
would occur if all parameters except Xi were fixed, accounting for all interactions with 
other parameters. Ensemble members are constructed by sampling two ensembles of size 
n from the Sobol quasi-random sequence [Sobol, 1993; van Werkhoven et al., 2008], then 
“cross-sampling” by holding one parameter fixed at a time for a total of n(k+2) parameter 
sets, where k is the number of parameters. The Noah land surface model is run 



independently for each parameter set, and a performance metric is computed for each 
ensemble member. In this study, the chosen performance metric to compare the observed 
and simulated latent heat fluxes is the Kling-Gupta efficiency (KGE) metric [Gupta et al., 
2009]. This multi-objective metric combines three terms: linear correlation, temporal 
variability, and mean bias. 

 

 
 
Figure 3. The summary of the total-effect sensitivity index across all stations is shown via a boxplot 
per model parameter. The red line indicates the median value and the green dot indicates the mean. 
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After calculating the first-order and total-effect sensitivity indices for each site, the 
results are summarized across all eddy covariance stations to assess the parameter 
sensitivity across the FLUXNET network; the results are shown in Figure 3. The total-
effect index is computed at each 130 site for each of the chosen 9 model parameters. The 
boxplots in Figure 3 are the summary of all total-effect index values in the network per 
parameter. Noah’s ability to accurately simulate latent heat flux is highly sensitive to both 
rs,min and Czil. The same is true for fxexp when we focus on sites that have a strong seasonality 
in vegetation coverage or have minimal vegetation coverage year round. The model 
performance is strongly insensitive to the rest of the parameters. This provides a strong 
argument that model calibration should focus on the rs,min, Czil, and fxexp parameters, fixing 
the remaining parameters with values from the model look-up tables.  
 
Task 4: Developing and testing new ET parameterizations  
 

Model Parameter Optimization - Reducing the number of parameters using the Sobol 



sensitivity analysis simplifies the calibration exercise at each eddy covariance site. The 
next step is to determine the optimal parameter values that minimize the biases in the 
simulated latent heat. To obtain approximately optimal model performance while assessing 
the role of model parameter equifinality, the Latin Hypercube Sampling technique (LHS) 
[McKay et al., 1979] is used to assess model performance across the reduced model 
parameter space. We assess the model performance for each parameter set by computing 
the KGE between the observed and simulated latent heat fluxes.  

Figure 2 shows how the biases and linear correlation change when selecting the best 
model parameter set from the Latin Hypercube Sample compared to the default parameters. 
The results suggest that optimization leads to a large reduction in the bias in the mean and 
the standard deviation at each site. The network average of the mean bias shifts from 25% 
to 9%; the network average of the standard deviation bias shifts from 19% to 7%. 
Unfortunately, the improvement in the linear correlation is not as dramatic. The network 
average linear correlation shifts from 0.70 to 0.75. Upon combining these components to 
create the KGE metric we notice a shift in the network average KGE from 0.53 to 0.70. 
The network median of the KGE shifts from 0.62 to 0.73. The difference between the mean 
and the median suggests that there are a number of sites that perform very poorly using the 
look-up table parameter values that improve significantly after optimization. The inability 
to improve many stations that have a KGE under 0.5 after optimization suggests room for 
further improvement. This could be indicative of biases and uncertainties in the input data 
or structural deficiencies in Noah’s evapotranspiration module and its parameterizations.    

 
Model Parameter Regionalization - Although parameter calibration leads to a large 

reduction in bias in Noah’s estimates of latent heat flux, it does not ensure that the 
optimized parameters (rs,min, Czil, and fxexp) can be transferred to other sites using climate, 
vegetation, and soil characteristics. To test whether this is possible, an Extra-Trees model 
(Extra-Trees; [Geurts et al., 2006]) with 13,000 extremely randomized trees is fit using the 
local environmental characteristics to the optimal parameter sets. The model is validated 
using a leave-one-out cross validation for the 130 eddy covariance sites. The leave-one-out 
cross-validation results for the optimal parameter dataset are shown in Figure 4. When the 
13,000 trees are used to estimate the Noah model parameters, the coefficient of 
determination is above 0.96 for all three parameters. When only the trees that were not 
trained on a given site (100 trees) are used to estimate the parameters at that site, the skill 
decreases. In this case, the coefficient of determination of rs,min is 0.27, Czil is 0.17, and fxexp 
is 0.32. This provides a robust evaluation of the model’s ability to estimate the optimal 
parameters at sites not included in the training process. Although there is clearly room for 
improvement, the cross-validation results suggest that indeed a skillful functional 
relationship between the optimized model parameters and the local environmental 
characteristics does exist. 

 



 
 

Figure 4. An Extra-Trees model with 13,000 trees is fit to the 130 optimal parameter sets obtained 
via the Latin Hypercube Sample. A leave-one-out cross-validation is used to provide insight into 
the model’s skill to estimate parameters not used during training. These three panels illustrate the 
model’s skill to estimate the training and validation parameter sets. 

The use of global datasets of environmental characteristics allows for an estimation of 
these parameters using the optimal Extra-Trees model over the globe. Figure 5 shows the 
mapped estimates for both the mean (prediction) and the standard deviation (uncertainty 
estimate) of rs,min, Czil, and fxexp at a 1 km spatial resolution over the globe. The mean and 
standard deviation are calculated from the predictions at each grid cell of the 13,000 
decision trees in the fitted Extra-trees model. The predominance of high Czil values over 
dry climates and short vegetation is encouraging – this agrees with the physical 
understanding of the Czil parameter [Chen and Zhang, 2009]. However, the physical 
consistency of the spatial properties of rs,min are not as apparent. We would expect the 
highest values to be in the water and energy limited regions and the lowest in the areas that 
are not water or energy limited – this does not seem to be always the case. Although further 
investigation is required, this suggests that the role that optimized rs,min parameter values 
play in the model might not be related to its physical meaning but simply as a bias 
correction term that absorbs other sources of uncertainty in Noah’s estimates of 
evapotranspiration - including the errors in the resistance functions in the model’s Jarvis 
type formulation of canopy resistance. Finally, the fxexp parameter shows distinct spatial 
patterns. The values are highest in regions where we don’t expect a large role of bare soil 
in the latent heat flux. This suggests that the parameter optimization attempts to shut off 
the signal of bare soil evaporation in the model. Over drier regions, there is a tendency 
towards lower fxexp parameter values; it appears that the model attempts to increase the 
contribution of bare soil evaporation by allowing it to extract more water from the soil’s 
top layer. This outcome for both the high and low fxexp values could be indicative of model 
weaknesses in the reliance on the green vegetation fraction to define the bare soil 
contribution to evaporation.  

 



 
 

Figure 5. The fitted Extra-Trees model is used to map the predicted values (mean) and uncertainty 
estimates (standard deviation) of rs,min, fxexp, Czil globally at a 1 km spatial resolution. 

 
Task 5: Developing and Testing new Sensible Heat parameterizations 
 

The general parameterization for sensible heat flux, H, is: H= Cp (Ts-Ta)/ra , where  is 
air density [kg m-3], Cp is specific heat [J kg-1 K-1], Ts and Ta are surface and 2m air 
temperatures [K] respectfully and ra is the aerodynamic resistance [s m-1]. The 
parameterization of the aerodynamic resistance follows that formulated in Noah-MP.  In 
particular, ra = (Ch uz)-1 where uz is the wind speed at height z, and Ch is a bulk heat transfer 
coefficient whose parameterization is based on the Monin and Obukhov stability criteria 
(Monin and Obukhov, 1954), and can be written as (Chen et al., 1997): 

 



Where k is the von Karman constant that is ≈0.40,  z is height above the surface, z0m and z0h are roughness 
height for momentum and heat respectively, L is the Obukhov length, often represented by  

 

where u* is the friction velocity, ߠ௩	 is the mean virtual temperature, (ݓ’ݒ’ ) is the surface virtual 
potential temperature flux, and (.) are the stability functions for momentum and heat.  The ratio of the 
roughness heights for momentum and heat have been parameterized as (Zilitinkevich, 1995) 

 

 

where C  is referred to as the Zilitinkevich constant that depends on the vegetation characteristics.  In 
Task 4 this parameter (referred to there as Czil) was optimized based on FluxNet tower data.  Here we 
used an iterative scheme to correct z0h, u* and L to solve for Ch.    

For the data set developed under this task, we desired to maintain input and satellite 
consistency across data sets with other GEWEX products.  Thus, the sensible heat data 
product uses a land surface temperature (LST) data set consistent with retrievals from the 
High Resolution Infrared Radiation sounder (HIRS). Cloud-contamination and limits of 
swatch coverage cause sparse coverage in the retrievals, so the HIRS retrievals are merged 
with the NCEP Climate Forecast System Reanalysis (CFSR) LST estimates to form a 
global, hourly, 0.5° resolution LST data product (Coccia et al. 2015). These HIRS-
consistent estimates are validated against the Baseline Surface Radiation Network 
(BSRN)-based LST (Siemann et al. 2016). Multiple reanalysis-based air temperature 
estimates are used to form the surface temperature gradient for the sensible heat flux 
estimates.  

The aerodynamic resistance is based on the iterative solver used in the Noah land surface 
model (LSM) and optimized values at 70 global FluxNet towers (as earlier described under 
Task 4), which are extended into a global gridded-dataset using an objective analysis with 
climate and land cover covariates. A climatology of roughness length is taken from the 
UMD land cover data set for each vegetation type, and sensible heat estimates consist of a 
weighted average based on fractional coverage of sensible heat fluxes for each vegetation 
type which is then weighted based on green-vegetation fraction and bare soil for the final 
weighted average for each grid. The final product is a global, hourly, terrestrial, 0.5° 
resolution sensible heat flux data set for each of six different air temperatures (see Figure 
6).  

Global annual averages of four of the six sensible heat flux products fall within the range 
of values from the recent literature (i.e. Wild et al. 2015; L’Ecuyer et al. 2015; Jung et al. 
2011), including our “baseline” product calculated with the 2-meter air temperature, which 
is consistent with ECMWF Interim Re-Analysis (ERA-Interim) and Climate Research Unit 



(CRU) Time Series 3.10 monthly data (Wang and Zeng 2013). The sensible heat flux 
displays reasonable spatial patterns in many regions, including negative sensible heat 
fluxes in some areas with seasonal snow cover, low sensible heat flux over heavily forested 
areas, and high sensible heat flux for regions with shorter vegetation, such as Australia, the 
Horn of Africa, South Africa, and the Southwest of CONUS. Other regions display over-
estimation in our products relative to reanalysis estimates including the CONUS Midwest 
region, the Canadian Prairies, and portions of central and eastern Eurasia. These products 
are also compared with FluxNet sensible heat flux estimates at 34 stations, and while 
several monthly correlations are above 0.5 for various products at 10 stations, correlations 
are low and biases are large at several other stations. Mis-match in the sensible heat flux 
products and reanalysis products as well as FluxNet products can be attributed to the 
sensitivities of the sensible heat flux to several input variables as well as the uncertainties 
in sensible heat derived from uncertainties in these inputs, including roughness length, the 
Zilinkitevich empirical constant, the temperature gradient, and the wind speed.   

 

Figure 6: Annual average sensible heat flux (1979-2009) for products using (a.) the CFSR temperature 
gradient, (b.) the CFSR air temperature, (c.) the National Aeronautics and Space Administration (NASA) 
Global Modeling and Assimilation Office (GMAO) MERRA air temperature, and (d.)-(f.) air 
temperatures consistent with CRU monthly data and based on ERA-Interim, National Centers for 
Environmental Prediction (NCEP) – National Center for Atmospheric Research (NCAR) reanalysis 1 
(NRA), and MERRA, respectively.  



Project Summary and Conclusions 
 
This project has used the global network of eddy covariance sites (FLUXNET) to validate 
and improve the parameters of the evapotranspiration module in the Noah land surface 
model. A comprehensive sensitivity analysis using Sobol’s method shows that the model’s 
skill to simulate evapotranspiration is strongly tied to the rs,min, Czil, and fxexp model 
parameters. A 1,000 Latin Hypercube Sample is used to find the optimal values of these 
three parameters at each of the quality controlled 130 eddy covariance sites. Overall, 
calibration of the most sensitive parameters leads to a large decrease in biases in both the 
mean and temporal variability with a relatively small improvement in linear correlation. 
The Extra-Trees machine-learning algorithm is then used to relate the optimal parameter 
sets at each site to local environmental characteristics. Evaluation of the fitted Extra-Trees 
model shows that this parameter estimation technique can lead to improved simulations of 
the latent heat fluxes at both sites that were used to train the parameter regionalization 
model and those that were left out for validation. Finally, this functional relationship is 
used to produce 1-km maps of the rs,min, Czil, and fxexp parameters over the globe. The 
parameter regionalization technique developed in this study has the potential to enable the 
land surface modeling community to move beyond outdated parameter look-up tables. This 
research demonstrates the potential for integrating the extensive and growing network of 
FLUXNET observations to improve the parameterization and process representation of 
terrestrial evapotranspiration in macroscale land surface models. Further work will look 
into the impact of including the updated model parameters in coupled simulations to 
determine the impact of model parameter biases on the land-atmosphere coupling.  
 
Highlights of Project Accomplishments 
 

 Gathered and curated the FLUXNET database of eddy covariance sites. 
 Ran a SOBOL sensitivity analysis to determine how sensitive the model estimates 

of latent heat flux are to the Noah model parameters.  
 Used the Latin Hypercube sampling technique to estimate the optimal parameter 

set per FLUXNET site and determine the role of model parameter equifinality. 
 Developed, implemented, and validated an extra-trees regression model to 

estimate the optimal parameter sets globally at a 1 km spatial resolution. 
 

Conference Presentations from the Project 
 

 N.W. Chaney, Liang. M., Wood, E. F., Validation of a suite of process-based 
models of evapotranspiration using FLUXNET, AGU 2012, (Contributed poster) 

 N. W. Chaney and Wood, E. F., Improving Conductance Schemes in Macroscale 
Land Surface Models, EGU 2014, (Contributed talk) 

 A. Siemann, G Coccia, N Chaney, D Miralles, C Jimenez, M F McCabe, E F 
Wood 2015 Analysis of a global terrestrial sensible heat flux dataset and global 
energy budget closure, presented at Earth Observation for Water Cycle Science 
2015, ESA-ESRIN, Frascati, 20th-23rd October 2015  
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 Coccia, G., A. Siemann, M. Pan, and E.F. Wood, 2015: Creating consistent datasets 
combining remotely-sensed data and Land Surface Model estimates through a 
Bayesian uncertainty post-processing: the case of Land Surface Temperature from 
HIRS. Remote Sensing of the Environment, 170, 290-305, 
doi:10.1016/j.rse.2015.09.010. 

 Chaney, N.W., Herman, J. D., Ek, M. , and Wood, E. F., 2016. Deriving global 
parameter estimates for the Noah land surface model using FLUXNET and 
Machine Learning, J Geophys. Res. – Atmsoph. (in revision). 

 Siemann, Amanda L., Gabriele Coccia, Ming Pan, Eric F. Wood. 2016 
Development and Analysis of a Long Term, Global, Terrestrial Land Surface 
Temperature Dataset Based on HIRS Satellite Retrievals, J Climate, 29(10):3589-
3606, May 2016. 
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