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2) Results and Accomplishments 
 
The objective of this project is to produce a real-time data assimilation (DA) system for optimal 
assimilation of thermal infrared (TIR) and microwave (MV) soil moisture (SM) and insertion of 
near real-time green vegetation fraction (GVF) into the Noah land-surface model component of 
the National Land Data Assimilation System (NLDAS) using the NASA Land Information 
System (LIS). NLDAS produces the hydrologic products (e.g. soil moisture, evapotranspiration, 
and runoff) used by NCEP for operational drought monitoring, but these products are sensitive to 
model input errors in soil texture (affecting infiltration rates and water holding capacity) and 
prescribed precipitation rates. Periodic updates of SM state variables in LSMs achieved by 
assimilating diagnostic moisture information retrieved using satellite remote sensing have been 
shown to compensate for model errors and result in improved hydrologic output. Assimilation 
results will be validated using in-situ SM observations and a data denial validation methodology. 
Additionally, an extensive quantitative evaluation of SM moisture anomalies from the DA 
simulations will be compared to ALEXI ESI and standard drought metrics, including the 
operational NLDAS output. Outputs from the real-time DA system will include near real-time 
(updated each night) maps of surface and root-zone SM, ET and runoff and will be delivered to 
the Climate Prediction Center for use in the North American Drought Briefing and to the 
National Drought Mitigation Center in support of the United States Drought Monitor. 
 

a. Assessment and Optimization of Data Assimilation Methodology\ 
 

The data assimilation methodology required a number of datasets to be processed and archived 
for the retrospective period 2000-2014. These datasets include: 

• NLDAS forcing, used for initializing and for providing meteorological forcing for the 
Noah LST. 



• TRMM 3B42RT precipitation estimates, used for providing precipitation input for the 
open-loop simulation and each data assimilation simulation in the data denial 
validation methodology. 

• NESDIS green vegetation fraction and MODIS leaf area index, is used to update the 
  fraction of green vegetation in the Noah LSM. 

• ALEXI soil moisture retrievals (thermal-infrared), used in the data assimilation 
experiments. 

• LPRM (AMSR-E) passive soil moisture retrievals and the ESA Essential Climate 
Variable (ECV) merged active + passive microwave soil moisture dataset.  

 
Comparison of NESDIS GVF vs. MODIS LAI 
The impact of updating the fraction of green vegetation parameter in the Noah LSM will be 
quantified in a series of data assimilation experiments, as compared to the climatological 
specification that is currently used in NLDAS. Currently, two widely used GVF datasets are 
available: (1) the NESDIS Green Vegetation Fraction dataset, based on a scaling of minimum 
and maximum NDVI and (2) the MODIS Leaf Area Index dataset, which can be converted to a 
fraction of green vegetation based on a canopy gap fraction methodology. In general, the 
NESDIS product seems to overestimate green vegetation fraction of agricultural regions and 
dense forests where saturation of the NDVI signal occurs. Therefore, a final decision to use 
fraction of green vegetation from MODIS was made to maintain consistency between the data 
assimilation simulations and the dataset used in the processing and subsequent retrieval of soil 
moisture from ALEXI. The next step was to compare the near-real-time MODIS LAI product 
(used to compute green vegetation cover) against the climatological fields currently used in the 
Noah LSM. These climatological fields are based on a similar NDVI scaling routine as used in 
the NESDIS GVF product. Additionally, the climatological fields are based on a relatively 
short record 5-year period. For applications pertaining to drought monitoring, the use of 
climatological vegetation fields in Noah can cause large differences in the observed vegetative 
state and the climatological fields. Fig. 1 shows the importance of using near-real-time 
vegetation data in Noah, in the example shown; the anomalies in GVF for 5 August 2012 were 
on the order of 10 to 20% below normal over the central US in drought affected areas.  

 
Re-scaling/interpolation of ALEXI and LPRM moisture retrievals 
Soil moisture retrieval datasets and SM predictions from LSMs can exhibit significant 
differences in their climatological statistics. The effect of these biases can be mitigated by 
employing a technique using the first two statistical moments (mean and variance) to rescale 
ALEXI and LPRM soil moisture retrievals. ALEXI soil moisture is retrieved once per day in 
cloud-free pixels over CONUS at a spatial resolution of 10 km, while LPRM soil moisture is 
available at a spatial resolution of 25 km. Each soil moisture dataset was spatially interpolated 
to the 0.125° NLDAS domain. Dataset-specific values of climatological means (μ) and 
variances (σ) for each day of the year are calculated for all three datasets based on a 28-day 
centered moving sampling window and all years of ALEXI and LPRM retrievals. Using these 
statistics, SM retrievals from remote sensing sources (ALEXI and LPRM) are linearly re-
scaled to provide a volumetric SM estimate consistent with Noah. 



 
Figure 1. MODIS fraction of green vegetation cover anomaly for 5 August 2012 (anomaly calculated 

over MODIS period of record [2000-2014]).  
 

The initial evaluation of the data assimilation experiments using climatological green 
vegetation fraction has shown a successful assimilation of ALEXI and LPRM soil moisture. 
The following summarize the initial evaluation of the results based on the data denial 
evaluation methodology: 

• On average, all three of the assimilation strategies (TIR; MW; TIR+MW) reduce 
the RMSD with respect to the CONTROL case in comparison with the OLP 
simulation. 

• Spatially averaged RMSD for the 0-5 cm Noah soil moisture layer, valid during all 
warm season months (April-October), for the OLP, ALEXI, LPRM and DUAL cases 
are 0.046 m3 m-3, 0.032 m3 m-3 (30% reduction), 0.030 m3 m-3 (35% reduction), and 
0.028 m3 m-3(39% reduction), respectively. 

• The magnitude of RMSD improvement (in terms of % improvement) in the root-zone 
layer is similar in all cases compared to that in the surface layer: RMSD for the OLP, 
ALEXI, LPRM and DUAL cases are 0.041 m3 m-3, 0.028 m3 m-3 (32% reduction), 
0.034 m3 m-3 (17% reduction), and 0.033 m3 m-3 (20% reduction), respectively. 

• A majority of the study domain exhibits improvement greater than 0.01 m3 m-3 relative 
to the OLP simulation in the surface layer, regions of the eastern CONUS exhibit no 
significant improvement and/or degradation (e.g., RMSD differences between -0.01 m3 

m-3 and 0.01 m3 m-3). 
• In general, spatial patterns in root-zone SM (5-100 cm) improvement are similar to those 

for the surface layer over a majority of the central CONUS, with widespread 
improvement on the order of 0.01 to 0.03 m3 m-3, however more significant 
differences are observed over the western CONUS. 

 
b. Improvements to the ALEXI ESI and Soil Moisture Proxy Dataset and Transition from 

AMSR-E based MW SM Products 
 



Transition from 10-km Products to 4-km Products over CONUS 
To better exploit the full resolution of GOES Imager thermal data (4-km at nadir) all CONUS 
ALEXI ESI and SM datasets were transitioned from 10-km GOES Sounder thermal data to 4-km 
GOES Imager thermal data. The higher resolution products provide better spatial detail in the 
ESI and SM datasets, especially in regions with significant gradients. Fig. 2 shows an example of 
original 10-km ESI product for August 7, 2007 and of the new 4-km ESI product for the same 
date. All near-real-time ALEXI ESI and SM products are now available at the updated 4-km 
resolution. Additionally, the entire ALEXI climatology (back to 2000) was reprocessed at the 
new resolution to be consistent with the near-real-time products.  

 
Transition from LPRM AMSR-E MW SM products to ESA ECV Merged Active+Passive MW 
SM Products 
During 2011, the AMSR-E sensor which was the source of passive microwave soil moisture 
retrievals used in this study failed. Our research team investigated several other microwave-
based soil moisture datasets to use as a replacement for the AMSR-E-based LPRM products that 
were initially used. The team decided to transition the analysis to the ESA Essential Climate 
Variable (ECV) merged active and passive soil moisture dataset. The ESA ECV datasets is the 
most complete and consistent global microwave soil moisture dataset and extends back to 1978 
at a spatial resolution of 0.25 deg. The dataset uses observations from a series of sensors: C-band 
scatterometers (ERS-1/2 scatterometer, METOP Advanced Scatterometer [ASCAT]) and multi-
frequency radiometers (SMMR, SSM/I, TMI, AMSR-E, Windsat). 
 
c. Intercomparison of ALEXI, ECV and Noah Soil Moisture for Improved Retrieval 

Error Characterization 
 

SM Anomaly Correlation Analysis 
In this section, Noah SM predictions are used as the baseline to evaluate the relative performance 
of satellite-based SM retrievals from either TIR or MW observations. Figure 3 (a-d) presents the 
anomaly correlations between each of the satellite based SM products (ALEXI, ECV, ECV-
active, and ECV-passive) and Noah SM predictions over the validation period of 2000 – 2013. 
The sample size at each pixel is presented in Figure 3e. The differences in anomaly correlation 
with respect to ALEXI, ECV, ECV-active and ECV-passive products are shown in Figure 4, 
from which their relative skills can be compared. The average correlation coefficients for each of 
the product over the land pixels of CONUS domain is listed in Fig. 3, along with the statistics of 
the number of pixels (in percentage) with the highest anomaly correlation compared to the 
others. 
 
In general, the satellite-based SM products agree well with the Noah LSM predictions, especially 
over the central United States. Among all the satellite based SM products, ALEXI presents best 
agreement with Noah predictions with the correlation of 0.52 averagely over the CONUS. The 
correlation map of ALEXI product exhibits overall positive correspondence without regions with 
significant low or negative correlations. The anomaly correlation of ECV-passive retrievals turns 
out to be the weakest, with low correlation over the majority of eastern area and over the west 
coast of the US. It is interesting to notice that the ECV-active and ECV-passive products provide 
complementary information with respect to SM anomalies, the former with better consistency 
over eastern region with moderate vegetation density but the latter over western area with low 



vegetation cover. ECV-merged makes fully use of the strengths from both active and passive 
sensors in term of their sensitivities to land vegetation density, and therefore, SM anomalies of 
the ECV-merged product match well with Noah SM predictions across CONUS with the mean 
correlation coefficient of 0.49 over all land pixels, larger than either of the individual products. 
In the central US, where both individual products (ECV-active and ECV-passive) correlate well, 
ECV merged product takes the average of both individual products which lead to the anomaly 
correlation of ECV merged product not as strong as either ECV_ACT or ECV_PAS. Also, the 
relatively low correlation can be detected along the border of California and Nevada in the 
anomaly correlation map of ECV merged product.  
 

 

 
 

Fig 2. ALEXI ESI for 7 August 2007 from the original 10-km domain (top) and the new updated 4-km 
domain (bottom). 



 
Land surface vegetation cover is found to be a key factor to interpret the retrieval accuracy of 
WM satellite based products. The correlation map of ECV passive present a similar pattern with 
the multiyear (2000 - 2013) average vegetation fraction cover map. The relative performance 
between the active and passive is better illustrated in the correlation difference map shown in 
Fig. 4d. For ECV-passive, better consistency can be found in the regions with low vegetation 
cover (western and central US), while the correspondence is low over relatively dense vegetation 
covers (high terrain of western US and eastern US). On the other hand, the ECV-active product 
presents complementary performance with relatively high correlations over the moderate or 
dense vegetation pixels, but performs poorly over desert areas. Notably, ALEXI retrievals 
performs best in the high vegetation fraction areas, while MW-based products are better 
representative over the desert regions (passive) and central US (active and passive) where 
average vegetation fraction is low. ECV-active retrievals show poor correspondence over the 
western US, where surface roughness is another sensitive factor to active MW sensors.  
 
Comparison with In-situ SM from the North American Soil Moisture Database (NASMD) 
 
The SM anomalies from satellite and model based products are evaluated with the SM anomalies 
observed from nearly five hundred North American Soil Moisture Database (NASMD) sites. The 
two-pair t-test is applied to test statistical significance of the anomaly correlations at the 99% 
confidence level. The passing rates of the anomaly correlations of satellite-based SM products 
are between about 70% and 93.7%. Listed in Fig. 5 are the average correlations for each of the 
SM products when statistics are statistically significant for all involved products at 459 ground 
sites in total. The spatial distributions of time series anomaly correlations between each of the 
SM products (satellite based products and Noah predictions) and ground observations are also 
shown in Fig. 5. The distribution maps of anomaly correlation illustrate that all products 
performed well in the central and eastern United States, while the correlations tend to be 
relatively lower in the western area for MW-based SM products (especially in regions of 
complex terrain). Noah predictions present the highest mean anomaly correlation of 0.51 relative 
to the ground validation dataset. Except for a small amount of validation sites in Oregon, the 
anomaly correlations of Noah predictions are strongly correlated with ground observations with 
the correlation coefficients on the order of 0.5 to 0.8. The satellite based products are also 
considerably skillful with respect to the representativeness of anomalies in soil moisure. ALEXI 
SM anomalies show good correspondence with the ground observations with a mean anomaly 
correlation coefficient of 0.40, identical to that found with the merged ECV product and ECV 
active product.  
 
Since vegetation density is found to be a key factor to satellite signals for both MW and TIR 
sensors, time series anomaly correlations are computed as the function of average vegetation 
fraction cover. Noah LSM performs well in a wide range of vegetation conditions. The histogram 
of ALEXI and ECV-merged have the similar distribution as that of Noah SM anomalies, but 
their correspondence strength is slightly less than that of Noah LSM estimates. It indicates that 
the ALEXI and ECV-merged products are also considerably representative over various levels of 
vegetation covers. However, the performance of ECV-passive is limited when vegetation 
fraction cover goes is higher than 0.6, while that of ECV-active is poor over low vegetation 
cover regions (fraction cover less than 0.15). 



 
(a)  ALEXI (b)  ECV-merged 

  
(c) ECV-active (d) ECV-passive 

  

 
(e) Sample Size Domain-averaged Correlations 
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product 
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ECV 0.49 13.6% 
ECV-

active 0.47 42.6% 

ECV-
passive 0.39 10.5% 

ALEXI 0.52 33.3% 
 

 
Fig. 3. Anomaly correlations computed between satellite-based SM products (ECV-merged, ECV-
active, EC-passive and ALEXI) and Noah SM predictions over the period of 2000 – 2013 (a-d); 

and analysis sample size (e). 
 
Quantifying the impact of non-precipitation water sources (e.g., irrigation, groundwater) on 
ALEXI and Noah estimates of ET 
 
Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, 
free drainage at the bottom of the soil column, and neglecting ancillary water inputs due to 
processes such as irrigation. As a consequence, the vertical infiltration of local precipitation 
represents the only source of soil water available for surface evapotranspiration (ET). However, 
recent work has also highlighted the importance of secondary water source (e.g., irrigation, 
groundwater extraction, inland wetlands and the lateral redistribution of water by topography) 



and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and 
sensible heat fluxes at the land surface. While attempts have been made to incorporate irrigation 
tile drainage (and groundwater processes into land surface models (LSMs), these efforts 
generally require parameters that are difficult to measure (e.g., the volume of water applied in 
irrigation or groundwater recharge rates) and modify LSM outputs in ways that are challenging 
to validate. Surface energy balance models based on thermal infrared remote sensing offer a top-
down opportunity to directly observe the impact of non-precipitation water sources and 
anthropogenic water sinks on the land surface energy balance. For example, ALEXI uses time-
differential measurements of morning land surface temperature (LST) rise to diagnose the 
partitioning of available energy into sensible, latent and ground heat flux components. In contrast 
to prognostic LSMs, ALEXI does not employ a water balance model to predict ET and soil water 
availability. Instead, water availability and its subsequent impact on surface energy fluxes is 
diagnosed directly from the observed pre-noon rise in LST. As a result, the model requires no a 
priori parameterization of water source and/or sinks processes. Therefore, understanding the 
effects of these non-precipitation inputs on diagnostic methods, such as ALEXI, and prognostic 
methods, such as LSMs [e.g., Noah] is becoming increasingly important, especially in drought 
monitoring applications. For example, regions where large precipitation deficits are observed, yet 
other sources of soil moisture are available (e.g., irrigation or vegetation tied to groundwater 
reserves) could lead to divergent anomaly signatures from the two methods during drought 
periods.  
 
 

(a)  ALEXI - ECV-merged (b)  ALEXI – ECV-active 

  
(c) ALEXI – ECV-passive (d) ECV-active – ECV-passive 

  

 

Fig. 4. Difference in anomaly correlations computed between (a) ALEXI and ECV-merged, (b) 
ALEXI and ECV-active, (c) ALEXI and ECV-passive and (d) ECV-active and ECV-passive. 

 
 



 
2000 – 2013                      Noah ECV 

  
ECV/active ECV/passive 

  
ALEXI Averaged anomaly correlation 

 

SM product *Ave 
correlation 

Noah 0.51 
ECV 0.40 

ECV/active 0.40 
ECV/passive 0.37 

ALEXI 0.40 
 

 
Fig. 5.  Time series anomaly correlation coefficients computed between SM products (Noah, ECV, 

ECV/active, ECV/passive and ALEXI) and ground observations over the period of 2000 – 2013. 
 
Since the standard Noah formulation lacks the ability to represent any water source except local 
precipitation, areas with large irrigation and/or groundwater-based water inputs should 
demonstrate a negative bias in LENOAH relative to LEALEXI. Likewise, these same areas should 
also be associated with relatively low VARALEXI (since effects of inter-annual precipitation 
variability will be largely muted by irrigation and/or groundwater extraction). Conversely, areas 
in which Noah simulations neglect the impact of tile drainage (i.e., anthropogenic sinks) should 
be associated with a positive bias in LENOAH relative to LEALEXI. This unit-less index can be 
interpreted as a qualitative indicator of the impact of non-precipitation water sources on the 
diagnostic energy balance model output. In particular, large positive ASSET values reflect 
regions where the neglect of non-parameterized moisture sources (e.g., irrigation, extraction of 
shallow groundwater by phreatophytic plants or soil wicking, or direct evaporation from surface 
water) introduces a negative bias in growing-season LENOAH results. Conversely, negative 
ASSET values will reflect regions where sinks in soil moisture (e.g., tile drainage) are not 



accurately represented in the Noah LSM, leading to a positive bias in seasonal LENOAH.  
Fig. 6 maps unit-less 4-km ASSET index values over the CONUS domain. Pixels where non-
precipitation moisture inputs may have a significant effect on clear-sky LE (areas of elevated 
LEALEXI as compared to LENOAH and low VARALEXI) are denoted as positive values (green and 
blue tones). Conversely, negative ASSET values (red tones) potentially reflect the neglect of 
anthropogenic sinks in Noah surface energy balance predictions. As discussed above, areas of 
complex terrain are masked and shaded in grey. Spatial variations in positive ASSET values 
appear to accurately map the extent and the magnitude of non-precipitation water sources (e.g., 
irrigation; shallow water table depths; surface wetlands) on the surface energy balance. Labeled 
domains in Fig. 6 correspond to areas examined in detail below: (i) irrigated agricultural regions 
of the western CONUS (e.g., the Central Valley of California, Snake River Valley of southern 
Idaho, central Washington and south of the Salton Sea in extreme southern California); (ii) 
irrigated agricultural regions in the south central US (e.g., regions in the panhandle of Texas, 
western Kansas and large portions of Nebraska); (iii) the north central US exhibiting numerous 
soil water sources (e.g., shallow water table and surface wetlands (prairie potholes) and sinks 
(e.g., extensive agricultural tile drainage)), and (iv) the southeastern US, a region with extensive 
irrigation and shallow water tables in the Mississippi River valley, extensive wetlands along the 
Gulf Coast and shallow water table throughout much of Florida. Large positive ASSET values in 
many of these areas can generally be explained via comparisons to independent irrigation and/or 
groundwater depth maps shown in Figs. 6b and 6c. Likewise, the occurrence of negative ASSET 
values in the north-central US may be partially attributed to the known impact of agricultural tile 
drains 
 
d.  Improved Drought Monitoring based on assimilation for TIR and MW SM Products 

into the Noah LSM 
 

i. Noah / ALEXI / LPRM (2003-2011) 
A preliminary analysis of the simulations which assimilated ALEXI and LPRM SM retrievals 
were compared to USDM classifications (and anomalies) and SM anomalies from the Control 
simulation (Noah with no assimilation forcing with NLDAS precipitation; Fig. 2). Spatial 
anomaly correlations were computed for the following simulations against anomalies in the 
USDM classifications to assess how the assimilation of ALEXI and LPRM improved the 
representation of drought in the USDM. The anomaly correlations were computed over the 
2003- 2011 analysis period for the months of June, July and August (consistent with LPRM 
availability; however additional analysis were performed for ALEXI which is available 
during the entire 2000-2011 periods). Spatial anomaly correlations for raw ESI (ALEXI), raw 
LPRM, and Noah CTRL (no assimilation) shows that averaged over the 3 months Noah 
exhibits the highest anomaly correlation with ΔUSDM (r = 0.61), followed by ESI (r = 0.55) 
and LPRM (r = 0.46). As expected, the assimilation of ESI and LPRM do in fact improve the 
anomaly correlations over the raw retrievals and the Noah Control simulation. The single 
assimilation of ESI and the dual assimilation (ALEXI ESI + LPRM) each exhibited the 
largest correlation with ΔUSDM (r = 0.65), while the single assimilation of LPRM (r = 0.62) 
was slightly lower, however significantly higher than the raw LPRM retrievals. This analysis 
will be expanded in Year 3 to include all proposed simulation methodologies (e.g., SM 
assimilation, near real-time GVF/albedo vs. climatological values) and include additional 
drought indicators. 



 

 
 

Fig. 6. a) ASSET (top) computed from an average of 13 JJA composites (2000-2012; Positive (negative) 
values indicate regions where ALEXI clear-sky LE was greater (less than) than Noah clear-sky LE, 

collocated with low annual variability of ALEXI clear-sky LE), b) simulated groundwater table depth 
(middle; Fan et al. 2007; Miguez-Macho et al. 2008) and c) MODIS irrigation percentage (bottom; 

Ozdogan and Gutman 2008). 
 



 
Table 1. Spatial anomaly correlations computed against anomalies in the USDM drought 

classifications for June, July and August (2003-2011). 
 

 ESI LPRM Noah Noah+ESI Noah+LPRM Noah+ESI+LPRM 
June 0.51 0.37 0.56 0.60 0.55 0.59 
July 0.54 0.48 0.60 0.65 0.64 0.66 

August 0.61 0.52 0.66 0.70 0.68 0.71 
       

Mean 0.55 0.46 0.61 0.65 0.62 0.65 
 
Fig. 7 shows an example of the merging through data assimilation of ALEXI ESI into the Noah 
LSM (version used in current operational NLDAS) for 5 August 2011. A large and significant 
drought was ongoing across the south central US during this analysis period.  The merged 
ALEXI + NLDAS SM (Fig. 7c) anomaly map exhibited an increased correlation (r = 0.72) with 
the USDM classifications than either of the single products (Fig. 7. a-b; r = 0.64 and r = 0.68). 
 

ii. ALEXI / ECV / Noah (2000-2014) 
 
After the failure of AMSR-E in 2011, the assimilation experiments were repeated with the ESA 
ECV merged SM dataset and ALEXI over the 2000 to 2014 period. The results were similar to 
what was found in the initial analysis using LPRM, however, the ECV anomaly correlations 
were slightly higher than those found with LPRM. In general, the merged Noah and ESI product 
offered a higher upgrade than the merged Noah and ECV product. The merging of all three 
datasets (Noah+ESI+ECV) in the data assimilation system exhibited the highest increase of any 
of the single product anomaly correlations (r = 0.67).  
 

Table 2. Spatial anomaly correlations computed against anomalies in the USDM drought 
classifications for June, July and August (2000-2014). 

 
 ESI ECV Noah Noah+ESI Noah+ECV Noah+ESI+ECV 

June 0.54 0.49 0.60 0.60 0.56 0.61 
July 0.57 0.48 0.61 0.67

 
0.66 0.68 

August 0.61 0.51 0.63 0.70 0.65 0.72 
       

Mean 0.57 0.49 0.61 0.66 0.63 0.67 
 
Fig. 8-10 show examples of the US Drought Monitor classification and each product (ALEXI 
ESI, ECV and Noah) using the same D0-D4 percentile ranks as used in the USDM for 5 August 
2007, 2008 and 2011. These maps will be available to users on the new NOAA STAR ESI 
website, supporting the GET-D system, in mid-2015. Providing anomaly and percentile maps of 
remotely sensed soil moisture products and NLDAS LSMs, along with products from a system 
that assimilates TIR and MW information into Noah will provide useful information to decision 
makers. Importantly, the three methods are largely independent, thus the merging of TIR, MW 
and modeling in a data assimilation system will add important information to current suite of 
drought indices than mainly rely on precipitation and vegetation information. 



 
 

 
 
 

Fig. 7. Drought products valid on 5 August 2011 for a) ALEXI Evaporative Stress Index, b) 
open-loop simulation of Noah, c) merged ALEXI and NLDAS and d) U. S. Drought Monitor 

Drought Classifications. 



 
 

 
 
 

Fig. 7. Drought products valid on 5 August 2011 for a) ALEXI Evaporative Stress Index, b) 
open-loop simulation of Noah, c) merged ALEXI and NLDAS and d) U. S. Drought Monitor 

Drought Classifications. 



 
 
 
 
 
 
 
 

 
 
 

Fig. 8. United State Drought Monitor Classification (a), Noah SM drought analysis (b), ALEXI ESI 
drought analysis (c), ECV SM drought analysis (d) and merged data assimilation drought analysis (e) for 

5 August 2007. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 

Fig. 9. United State Drought Monitor Classification (a), Noah SM drought analysis (b), ALEXI ESI 
drought analysis (c), ECV SM drought analysis (d) and merged data assimilation drought analysis (e) for 

5 August 2087. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
 

Fig 10. United State Drought Monitor Classification (a), Noah SM drought analysis (b), ALEXI ESI 
drought analysis (c), ECV SM drought analysis (d) and merged data assimilation drought analysis (e) for 

5 August 2011. 
 
 
 
 
 
 
 



 
e. Research-to-Operations (R2O) Plan and Outstanding Issues 
 
The data assimilation system developed and evaluated during this project shows potential 
improvement for real-time drought monitoring using land surface modeling and remotely sensed 
observations of soil moisture from thermal infrared and microwave sensors. However, 
operational production of all the remotely-sensed soil moisture observations needed in the 
system is not currently available; however this work has been leveraged to fill this observational 
gap.  
 
Our research team is currently beginning Year 2 of a project that will transition the production of 
ALEXI ESI into operations at the NOAA Office of Satellite and Product Operations (OSPO). 
Operational production is slated to begin in mid-2015. The system, GET-D (GOES 
Evapotranspiration and Drought Product System) will produce daily ET and ESI datasets from 
ALEXI over North America at a 10-km spatial resolution and CONUS at a 4-km spatial 
resolution. GET-D will be able to provide the operational support of a future ALEXI ESI / 
NLDAS data assimilation system. Also, our research team has developed and maintains an 
operational system at NOAA which produces near-real-time merged analysis of soil moisture 
from all available active and passive microwave sensors (SMOPS). The SMOPS system could 
potentially provide an operational stream of microwave products for the assimilation system but 
the use of SMOPS has been hampered by its relatively short period of record (2007-current), 
compared to ESA ECV. Retrospective processing back to 2000 (ESA ECV has been reprocessed 
back to 1978) is possible to match the ALEXI period of record. Our team is exploring potential 
funding avenues to support this work. While, the use of the ESA ECV product is optimal for 
retrospective analyses (as shown in this project), the ECV dataset is a “ESA Essential Climate 
Variable” and there are no current plans to operationally produce the product in near-real-time 
setting. This ultimately limits its use in a near-real-time assimilation-based drought monitoring 
system. SMOPS has the potential to provide the operation support of a future ALEXI ESI / 
Microwave / NLDAS data assimilation system, but is contingent on additional retrospective 
processing of the SMOPS system. NLDAS has begun operational production at NCEP EMC; 
however, the current system does not use any soil moisture assimilation. Our team will continue 
to work with the EMC group to move towards implementing TIR and MW SM assimilation into 
the operational NLDAS system.  
 
The development of ALEXI ESI facilitated by this project has also lead to additional data 
assimilation activities with NCEP EMC. For example, our research team has begun work on a 
NOAA-funded project to assimilate ALEXI datasets in the North American Mesocale (NAM) 
model at EMC. This work will assess the impact of assimilating ALEXI information in a 
mesoscale number weather prediction (NWP) model towards improving weather forecasts. 
Additionally, the assimilation MW soil moisture information from SMOPS is being tested in the 
Global Forecast System (GFS) at EMC. An initial analysis of the impact of SMOPS data 
assimilation in the GFS showed improvements in the forecasts of precipitation. Improvements to 
forecasts from NAM and GFS/CFS have the potential to have significant impacts to 0-15 day 
forecasts of precipitation which are important to the monitoring on current and developing 
drought conditions on those time scales.  
 



 
3) End-User Interaction / Data Product Dissemination 
 
A website (hrsl.arsusda.gov/drought) has been developed at HRSL to visualize ESI products 
side-by-side in comparison with USDM drought classifications and other drought indicators, 
both in real‐time and retrospectively. End‐user feedback and associated web page modifications 
are being recorded using a SharePoint collaboration web page, which can be accessed by the PI 
and web developers. Feedback provided by users Mark Svoboda (NDMC) and Kingste Mo 
(CPC) regarding access speed, annotation, and documentation has been used to improve web 
delivery. Under recommendations from USDM, an ESI change product was added to the 
website, to highlight areas of rapidly changing conditions. A link to this page has been 
established through the NIDIS Drought Portal at: 
http://www.drought.gov/drought/content/products-current-drought-and-monitoring-remote-
sensing/evaporative-stress-index. 
 
An additional website (mirrored with USDA HRSL) is currently under development at NESDIS 
STAR which will provide products currently disseminated at the USDA HRSL. Additional 
products developed from the data assimilation system in this project will also be available, 
initially for retrospective periods. A near-real-time production of the assimilation-based products 
will depend on leveraging future funding to support those activities. An integration of the data 
assimilation system into the GET-D framework is currently being explored.   
 
ESI products were evaluated in relation to 
NASS crop yield datasets over the ESI 
climatological period. Currently, NASS 
yield forecasts, released starting in 
August, are driven by correlations with 
NDVI from various sensors and LST 
from MODIS. Fundamentally, ESI should 
be able to effectively integrate signals 
conveyed by NDVI and LST, as well as 
precipitation deficits, and has potential to 
add value to current estimation algorithms 
used by NASS. Collaborator D. Johnson 
at NASS completed a preliminary 
evaluation of ESI correlations with USDA 
corn and soybean yields over the 2000-
2012 period. Correlations at state scale are 
maximized for corn in early August, 
coinciding with the first NASS yield forecast issued effective August 1 (Fig 11).  Crops in AR 
are largely irrigated, and may show weaker ET-based signals, while poor correlations in MN and 
ND require further investigation.  Based on these results, NASS plans to implement ESI-based 
yield estimates in August 2013 for internal comparison with standard forecasts.  However, NASS 
collaborators have indicated interest in higher resolution ESI products to better discriminate 
between crops and other land-use types, potentially improving the results found with the 10-km 
ESI products (Fig. 11).  

Figure 11. Correlations between 10-km ESI aggregated 
to state scale and final USDA state-level yield estimates 

for major corn-producing states. 

http://www.drought.gov/drought/content/products-current-drought-and-monitoring-remote-sensing/evaporative-stress-index
http://www.drought.gov/drought/content/products-current-drought-and-monitoring-remote-sensing/evaporative-stress-index
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