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1. Proposed Goals
The goals of our proposed work were to systematically diagnose predictability and skill
on subseasonal timescales in a suite of North American Multi-Model Ensemble (NMME)
models, and to develop a statically informed protocol for generating subseasonal predictions.
Specific goals include:

• Development of an objective criteria for diagnosing and comparing subseasonal pre-
dictability and skill in NMME for all relevant lead times, target days, and models.

• Objectively determine the number of lags that should be included in a lagged ensemble
to provide the most skillful subsesaonal forecast.

• Assess whether different initialization frequencies improve subseasonal forecast skill.

2. Results and Accomplishments
This document summarizes our major accomplishments for the award period August 2015
to May 2018.

Statistical Methods for Comparing Forecast Skill
We developed rigorous methods for comparing forecast skill in a previous CTB research
project (DelSole and Tippett, 2014). These methods represent a “breakthrough” in the long-
standing problem of deciding whether one forecast is more skillful than another. In partic-
ular, differences in skill have been assessed in some previous studies using Fisher’s test for
equality of correlations, or the F test for equality of variances. However, these tests assume
that the skill estimates are independent, which is never satisfied when the skills are com-
puted on a common period or use a common set of observations. DelSole and Tippett (2014)
proposed four new tests that can be applied over a common period.
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During the term of this project, we have built on the above results by developing a “ran-
dom walk” method of forecast comparison. The procedure is simple: the squared error of
forecasts A and B are computed, then the score is increased by one if A beats B, or decreased
by one if B beats A. The score is accumulated as a function of initial start time for a fixed lead
time. To test significance, a natural null hypothesis is that the forecasts are equally skillful, in
the sense that the probability that one model beats the other is 50%. It follows that the aver-
age score should vanish, and the 95% confidence interval can be computed from a Bernoulli
distribution with p = 1/2. In particular, the accumulated score should evolve according to a
classical random walk. Note that this methodology avoids the statistical pitfalls associated
with testing differences in correlation skill or mean square error discussed above. As an ex-
ample, we compare seasonal forecasts of NINO3.4 by CFSv2 with those by other models in
the NMME. The result is shown in fig. 1 (see figure caption for details). The figure reveals
an abrupt decrease in skill around 2000, presumably due to the discontinuity in climatology
of the CFSv2 associated with the introduction of ATOVS satellite data around 1998 (Kumar
et al., 2012). This result demonstrates that this technique has the potential to detect abrupt
changes in skill in real-time forecasting, which may prove useful for routine monitoring of
skill among NMME forecasts. We anticipate that this technique will be a useful foundation
for some of the research in this project.

Extended-range forecasts of areal-averaged Saudi Arabia rainfall
The climate of Saudi Arabia is arid to semiarid, and rainfall occurrence is infrequent and scat-
tered. However, when rainfall does occur in the region, it is sometimes intense and causes
flooding, loss of life and damage to property. Several studies have related precipitation in
the region to remote forcing, especially tropical convection related to ENSO and the MJO.
These climate signals are predictable, and based on the predictability of the MJO, it has been
proposed that rainfall in the region should be predictable up to 2-3 weeks in advance. We
have documented the ability of the CFSv2 to forecast areal averaged Saudi Arabia rainfall
(Tippett et al., 2015). We find that the CFSv2 was able to predict features of a 2013 flooding
event up to 10 days in advance. The reforecasts show that the CFS can skillfully predict
rainfall amount, number of days exceeding a threshold, and probability of heavy rainfall oc-
currence for varying forecast averaging windows. Logistic regression improves forecast skill
and reliability. Forecast probability signals have a clear relation with MJO phase during the
6-month wet season (November-April), with the forecasts for wet conditions being signifi-
cantly more common during phases 1,2,7 and 8 (fig. 2). No such relation is seen during the
dry season.

Predictability at week 3-4 over the contiguous United States
One of the goals of the proposed research was the diagnosis of predictability and skill on
subseasonal timescales. To this end, we evaluated the 3-4 week predictability of temperature
and precipitation over the United States in the Climate Forecast System version 2 (CFSv2).
The results are summarized in DelSole et al. (2017). We demonstrate that the CFSv2 is ca-
pable of producing skillful forecasts of temperature and precipitation in the 3-4 week range
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for regions of the continental United States. Skill is established by grid-point correlation
and Predictable Component Analysis, a statistical method that finds the components of each
respective fields that maximize predictability in the model. As an example, fig. 3 shows the
point-wise correlation skill for CFSv2 forecasts of January and July temperature and precip-
itation over the United States. This figure shows that significant forecast skill can be found
over nearly half of the area of the United States for January/July temperature and January
precipitation. Additional analysis presented in DelSole et al. (2017) indicates that these pre-
dictable structures are linked to variability of the El Niño Southern Oscillation (ENSO) and
the Madden Julian Oscillation (MJO). Another important contribution from this work was
development of a new significance test that accounts for serial correlation in daily data.

This work was presented at the 41st NOAA Climate Diagnostics and Prediction Work-
shop and was recently featured in Inside Science1 and highlighted on the NOAA Climate
Program Office website.2

Developing a Protocol for Subseasonal Forecasting
Often operational centers do not have the resources needed to perform the large number of
hindcasts required to identify the optimal forecast ensemble size. To address this issue, we
developed an objective method that can be used to estimate the skill of an arbitrary lagged
ensemble given only a finite number of hindcasts. A brief description of the methodology is
presented here, a more detailed can be found in Trenary et al. (2017).

If the errors are stationary, the mean square error (MSE) of the lagged ensemble as a
function of lead time (τ ) and lagged ensemble size (L) is

MSE(τ, L,∆) =
1

L2

L−1∑
m=0

L−1∑
n=0

C(τ +m∆, τ + n∆), (1)

where ∆ is the time interval between initialization times (assumed fixed for simplicity) and
C(τ1, τ2) is the covariance between forecast errors at leads τ1 and τ2 for forecasts verifying
on the same target date. We proposed a parametric model of C and use re-forecast data to
estimate the parameters of this model. Once the parameters are determined, the MSE can be
evaluated for arbitrary τ , L, and ∆ (note that ∆ can be fractions of the original time interval
between initializations).

This methodology was used to estimate the optimal lagged ensemble size for subseasonal
forecasts of the Madden Julian Oscillation (MJO). To do this, we first estimated the error
covariance matrices for the MJO indices RMM1 and RMM2 (Wheeler and Hendon, 2004)
from CFSv2 hindcasts initialized once per day and then fit a parametric model to each.
A representative example of the fit is shown in figs. 4a and b and demonstrates that the
parameterized covariance function is capable of capturing with great accuracy the lagged

1https://www.insidescience.org/news/breaking-new-ground-weather-forecasting
2http://cpo.noaa.gov/AboutCPO/AllNews/TabId/315/ArtMID/668/ArticleID/725267/NOAA-model-

shows-significant-forecast-skill-3-4-weeks-in-advance.aspx
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error growth as a function of lead and ensemble size for both indices. The skill derived from
this parameterized covariance function is shown in fig. 5b and is in excellent agreement with
the values computed directly from CFSv2 output fig. 5a.

Having estimated a parametric covariance function from once-per-day initialized fore-
casts, we now use it to compute the skill for 4-per-day initialized forecasts. The resulting
empirically derived MSE is shown in fig. 5d, which is in remarkable agreement with the
actual mean square error derived from lagged ensembles initialized six hours apart, shown
in fig. 5c. Note that the empirically derived normalized MSE captures the reduction of the
MSE with the inclusion of more initializations, this is particularly evident at the longer lead
times. These results demonstrate the we are able to fit an empirical model to the lagged error
covariance for a single initialization and interpolate this analytic function to different fre-
quencies. We can then accurately estimate of the impacts of sampling frequency on forecast
error as a function of lead time and ensemble size.

Operationally NCEP uses a total of 16 ensemble members per forecast day, which is
generated from 4 “burts” ensemble members at 0Z, 6Z, 12Z, 18Z. We use our parametric
covariance function to test whether increasing the ensemble size beyond once-per-day sig-
nificantly improves the MJO forecast skill. In particular, we evaluate the covariance function
at 16 and 1000 equally spaced intervals per day. The resulting NMSE as a function of lead
time and lagged ensemble size for the 16 and 1000 ensemble members are shown in fig. 6a
and b, respectively. Comparing these two figures, it is evident that there is little improvement
in forecast skill when more than 16 ensemble members are used. By comparing, fig.5d and
fig. 6a, we see that there is only marginal improvement in MJO forecast when the ensemble
size is increased from 4 to 16.

Monthly ENSO forecast skill and lagged ensemble size
We adapted the methodology described above to the lagged ensemble for real-time CFSv2
forecasts of Niño3.4 (Trenary et al. 2018). The main surprise in the new application to
Niño3.4, relative to our application to the MJO, is that an identifiability problem emerged
when estimating parameters in the covariance model because Niño3.4 has a much longer
time scale compared to the MJO. This problem was resolved by removing a parameter and
modifying the covariance model slightly. The resulting covariance model was robust regard-
less as to whether it was fit using real-time forecast data or hindcast data. We confirmed that
our covariance model could recover the MSE of a lagged ensemble initialized 4/day over
a wide range of ensemble sizes and lead times, even though it was estimated from 1/day
initialization data

Our major result from this part of the project is shown in figure 7. This figure shows the
normalized MSE for burst and lagged ensembles, as estimated by our method. Comparison
is made for given ensemble size. For example, when considering the lagged ensemble, the
initializations are included in ensemble size count (shown as the horizontal axis in fig. 7),
such that an ensemble size of 16 is equivalent to 4 lagged members with 4 initializations
per day (denoted by the vertical dashed line in fig. 7). The MSE of the burst ensemble was
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estimated from our covariance model by considering lagged ensemble members initialized
an infinitesimal time step apart. We find that for all leads and an ensemble size less than
30 days, the forecast skill as a function of ensemble size is roughly equal for the lagged
(with four initializations) and burst ensemble configuration. When more than 30 ensemble
members are included, the MSE of the burst ensemble saturates. This saturation of the MSE
provides an estimate of the infinite ensemble MSE, since no reduction in MSE occurs with
the addition of more members. In contrast, the MSE of the lagged ensemble continues to
grow with ensemble size since the addition of each lagged member introduces forecasts ini-
tialized further from the target date. Applying this method to real-time forecasts, we find
that the MSE consistently reaches a minimum for a lagged ensemble size between one and
eight days, when four initializations per day are included. This ensemble size is consistent
with the 8-10 day lagged ensemble configuration used operationally and is close to the es-
timated skill of the infinite ensemble. As such, the current ensemble configuration for the
operational monthly ENSO forecast appears to be nearly optimal. Improvements in forecast
skill will most likely come from increased spatial resolution and improvements to parameter-
ized physics, rather than increases in ensemble size. Moreover, we find that the skill of the
weighted, lagged, and burst ensembles are nearly the same.

This work was reported in Trenary et al. (2018).

Weighted-average lagged ensemble
During this award period, we also made theoretical strides in understanding the weighted
lagged ensemble. It is natural to consider a weighted ensemble because each member of
a lagged ensemble is initialized at different times, so intuitively one should down-weight
members that have smaller skill owing to their longer lead times. However, when we deter-
mined the optimal weights for minimizing mean square error, sometimes the member with
the longest lead time did not have the smallest weight (Trenary et al., 2017). To understand
this behavior, we examined a series of analytic examples designed to illuminate conditions
under which the weights of an optimal lagged ensemble become negative or depend non-
monotonically with lead time.

The optimal weights can be estimated directly from the error covariance matrix Σ as
follows

wopt =
Σ−1j

jTΣ−1j
, (2)

where j, is a vector consisting of ones. Since the error covariance matrix is positive definite,
eqn. (2) can be further decomposed into variance and correlation dependancies:

Σ = DRD, (3)

where D is a diagonal matrix, with elements equal to the lead dependent MSE, and R is
a correlation matrix. This decomposition allows us to examine changes in behavior of the
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weights with respect to perturbations made to error growth (D) and correlation ( R) proper-
ties separately.

Figure 8 shows results for three different error growth functions—logistic, linear, and
constant and three types of decay functions for the correlation—constant, power law and
linear. The three different autocorrelation functions are shown in figure 8a, and the error
growth functions are shown in figures 8b, d, f. In the case of the logistic function (figures
8b and 8c), the weights become negative for small lead times, but do not develop a U-shape
at the tail. For linear error growth (fig. 8d), the weights (fig. 8e) are positive and develop
positive curvature at the tail, with the curvature increasing with increasing correlation. Fi-
nally, for constant mean square error (fig. 8f), the weights show a very significant curvature
at the tail (fig. 8g). Because these results were obtained from an exactly solvable covariance
model, it eliminates questions about whether such behavior is caused by sampling errors.
Several mathematical properties of this model were derived which clearly demonstrate that
the optimal weights do not always decay monotonically with lead time.

Generally we find that the weights are most likely to behave non-monotonically when
the mean square error is approximately constant over the range of forecasts included in the
lagged ensemble and when the forecast errors at different lead times are highly correlated.

This work was reported in DelSole et al. (2018).

Climatology bias and forecast skill
In the course of our work with Niño3.4 lagged ensembles, we discovered significant biases
and discontinuities in the NCEP climatology for real-time forecasts. Subsequent investiga-
tion revealed that the monthly forecast climatology provided by the NCEP Environmental
Modeling Center (EMC) for the CFSv2 were biased in the sense of systematically differing
from the hindcasts that are used to compute it. These biases, which are unexpected, are
primarily due to fitting harmonics to hindcast data that have been organized in a particular
format, which on careful inspection is seen to introduce discontinuities. A further undesir-
able consequence of this fitting procedure is that the EMC forecast climatology varies dis-
continuously with lead time for fixed target month. For example, these discontinuities and
model biases are clearly visible when the EMC climatology for the Niño3.4 index is plotted
as a function of lead time for a few select months, shown as the colored curves in figure 9a
and b. Two alternative methods for computing the forecast climatology are proposed and the
resulting fits are shown as the black and grey curves in figures 9a and b. We found that the
choice of forecast climatology can have a large impact on the resulting forecast anomalies
and, therefore, forecast skill. As an example, figures 10a,b show two forecast anomalies
from the CFSv2 initialized 6 hours apart, where the anomalies are defined with respect to the
EMC forecast climatology. The figure shows that the earlier forecast for the monthly mean
(fig. 10a) is substantially cooler than the later forecast, despite being initialized only 6 hours
earlier. If, however, the anomalies are defined with respect to one of our proposed methods,
then the resulting forecast anomalies are shown in figures 10c, d and show much less varia-
tion. This result demonstrates that the difference in forecast anomalies seen in figures 10a,b
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are due primarily to the discontinuity in the EMC forecast climatology, not to the change in
forecast. Overall, the proposed methods more accurately fit the hindcast data and provide a
clearer representation of the CFSv2 model climate drift.

This work was reported in Tippett et al. (2018).

3. Highlights Accomplishments

• Development of a rigorous method for comparing forecast skill.

• Demonstration of forecast skill of temperature and precipitation over the contiguous
United States on the 3-4 week timescale. These results provide a scientific basis for
predictability on these timescales.

• Formalization of a rigorous significance test for serially correlated daily data.

• Development of a statistically informed methodology capable of identifying the opti-
mal ensemble using only preexisting data. The procedure is applicable to lagged and
burst ensembles and is capable of estimating the infinite ensemble in terms of the Mean
Square Error.

• Identification of the optimal lagged ensemble for subseasonal forecasts of the MJO
and seasonal forecasts of ENSO in CFSv2.

• Weights of the optimally weighted-average lagged ensemble do not always decay with
lead time. Using a series of analytic examples we clarify the conditions that lead to
this surprising and counterintuitive behavior.

• We demonstrate that the forecast climatology provided by the EMC introduces bias
into the forecast, thereby reducing skill. We propose two alternative methods for com-
puting the forecast climatology, both of which more accurately fit the hindcast data
and provide a clearer representation of the CFSv2 model climate drift.

4. Transitions to Operations
This project has produced a methodology that can be used to inform the protocol for opera-
tional lagged-ensemble forecasting. This methodology requires much less data for estimat-
ing the error of a lagged ensemble forecast than the usual brute force approach of producing
long-term re-forecasts at a high initialization frequency. Also, the re-forecasts need not in-
clude burst ensembles because our method can estimate the skill of a burst ensemble of
arbitrary size. This methodology is most useful at the planning stage prior to operations,
rather than after the forecasts become operational (in which case the protocol is frozen and
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not changeable). Our analysis indicates that the current ensemble configuration is optimal
for MJO and ENSO prediction, in terms of mean square error performance, and that further
improvements are very unlikely to be obtained by increasing ensemble size.

This project has discovered biases and discontinuities in the NCEP climatology for real-
time forecasts. In addition, we propose two simple methods for estimating climatologies that
avoid these biases and discontinuities. These methods represent a very simple modification
of the regression analysis that is already used in constructing the NCEP climatologies.

This project has produced compelling evidence that CFSv2 produces skillful forecasts
of temperature and precipitation in the 3-4 week range for regions of the continental United
States. An important contribution of this work is the development of a new significance test
that accounts for serial correlation in the data. Thus, the procedure developed in this project
can be applied to operational forecasts from future models. The results of our work provide
a foundation for developing operational forecasts beyond two weeks based on CFSv2 fore-
casts.
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4678.

DelSole T. and M. K. Tippett, 2015: Forecast comparison based on random walks.
Mon. Wea. Rev., 142(2), 615- 626.

Trenary L., T. DelSole, M. K. Tippett, and B. Doty, 2016: Extreme eastern US winter of
2015 not symptomatic of climate change [in ”Explaining Extremes of 2015 from a
Climate Perspective”]. Bull. Amer. Meteor. Soc., 97, S31-S35,
doi:10.1175/BAMS-D-16-0156.1.

Barnston A. G., M. K. Tippett, M. Ranganathan, and M. L. LHeureux, 2017: Deterministic
skill of ENSO predictions from the North American Multimodel Ensemble. Clim. Dyn.,
doi:10.1007/s00382-017-3603-3.

DelSole, T., L. Trenary, M. K. Tippett, and K. Pegion, 2017: Predictability of week-3-4
average temperature and precipitation over the contiguous United States.
J. Clim., 30 (10), 3499-3512, doi:10.1175/JCLI-D- 16-0567.1.

Shawki D., R. D. Field, M. K. Tippett, B. H. Saharjo, I. Albar, D. Atmoko, and A.
Voulgarakis, 2017: Long-lead prediction of the 2015 fire and haze episode in Indonesia.
Geophys. Res. Lett., 44, 9996-10,005, doi:10.1002/2017GL073660.

8



Tippett M. K., M. Ranganathan, M. L’Heureux, A. G. Barnston, and T. DelSole, 2017:
Assessing probabilistic predictions of ENSO phase and intensity from the North
American Multimodel Ensemble. Clim. Dyn., doi: 10.1007/s00382-017-3721-y.

Trenary, L., T. DelSole, M. K. Tippett, and K. Pegion, 2017: A new method for determining
the optimal lagged ensemble. J. Adv. Model. Earth Syst., 9, 291-306, doi:10.1002/2016.

DelSole, T., L. Trenary, and M. K. Tippett, 2018: The weighted-average lagged ensemble.
J. Adv. Model. Earth Syst, 9, 2739-2752. doi: 10.1002/2017MS001128.

Tippett M. K., L. Trenary, T. DelSole, K. Pegion, and M. L’Heureux, 2018: Sources of Bias
in the Monthly CFSv2 Forecast Climatology. J. Appl. Meteor. Climatol., 57, 1111-1121,
doi: 10.1175/JAMC-D-17-0299.1.

Trenary, L., T. DelSole, M. K. Tippett, and K. Pegion, 2018: Monthly ENSO forecast skill
and lagged ensemble size. J. Adv. Model. Earth Syst., 10, 1074-1086,
doi: 10.1002/2017MS001204.

6. PI Contact Information
Timothy DelSole

Department of Atmospheric, Oceanic, and Earth Sciences
Center for Ocean-Land-Atmospheric Studies
George Mason University
112 Research Hall, Mail Stop 2B3
Fairfax, VA 22030 USA

Voice: 703-993-5715 Fax: 703-993-5770 E-mail: tdelsole@gmu.edu

7. Budget for Coming Year
Not applicable.

8. Future Work
We have reached the end of the award period and no further work will be pursued under this
grant.

9



References

DelSole, T. and M. K. Tippett, 2014: Comparing Forecast Skill. Mon. Wea. Rev., 142, 4658–
4678.

DelSole, T., L. Trenary, M. K. Tippett, and K. Pegion, 2017: Predictabil-
ity of week-3–4 average temperature and precipitation over the contiguous
united states. Journal of Climate, 30 (10), 3499–3512, doi:10.1175/JCLI-D-
16-0567.1, URL http://dx.doi.org/10.1175/JCLI-D-16-0567.1,
http://dx.doi.org/10.1175/JCLI-D-16-0567.1.

Kumar, A., M. Chen, L. Zhang, W. Wang, Y. Xue, C. Wen, L. Marx, and B. Huang, 2012:
An analysis of the nonstationarity in the bias of sea surface temperature forecasts for the
NCEP Climate Forecast System (CFS) version 2. Mon. Wea. Rev., 140, 3003–3016.

Tippett, M. K., M. Almazroui, and I.-S. Kang, 2015: Extended-range forecasts of areal-
averaged Saudi Arabia rainfall. Wea. Forecasting, 30, 1090–1105, doi:10.1175/WAF-D-
15-0011.1.

Trenary, L., T. DelSole, M. K. Tippett, and K. Pegion, 2017: A new method for de-
termining the optimal lagged ensemble. J. Adv. Model. Earth Syst, 9, 291–306, doi:
10.1002/2016MS000838, URL http://dx.doi.org/10.1002/2016MS000838.

Wheeler, M. C. and H. Hendon, 2004: An all-season real-time multivariate MJO index:
Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

10



1990 2000 2010 2020

−
1
0
0

−
5
0

0

Initial Condition

C
o
u
n
ts

CanCM3

CanCM4

CM2p1−AER

FLOR−A

FLOR−B

CCSM3

CCSM4

IRI−A

IRI−D

NASA

CFSv1

CFSv2 less skillful

CFSv2 more skillful

Monthly Mean NINO3.4 Forecasts by CFSv2

1982−1998 CLIM; lead= 2.5; alpha= 5%

Figure 1: Comparison of monthly mean forecasts of NINO3.4 at lead 2.5 months between
CFSv2 and other models in the NMME. All forecasts and observations are centered relative
to the 1982-1998 period. The score is defined such that it is increased by one when the
squared error of CFSv2 is less than that of another model, and decreased by one otherwise
(the mean square errors are never exactly equal to each other). The scores are then accumu-
lated forward in time for each model separately, over all initial months and years, thereby
tracing out a random walk. The shaded area indicates the range of scores that would be
obtained 95% of the time under the null hypothesis of equally skillful forecasts. A random
walk extending above the shaded area indicates that CFSv2 forecasts are closer to obser-
vations significantly more often than expected under the null hypothesis (i.e., the CFSv2 is
more skillful than the model). Similarly, a random walk extending below the shaded area in-
dicates that CFSv2 forecasts are closer to observations significantly less often than expected
under the null hypothesis (i.e., the CFSv2 is less skillful than the model).
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Figure 2: Average first-lead logistic regression forecast probabilities of heavy rainfall during
the subsequent 5 days stratified by MJO phase three days prior to start for (a) Nov-Apr and
(b) May-Oct season. Heavy and light dashed lines show the unconditional mean and its 95%
confidence intervals, respectively, based on the number of forecasts in each phase.
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Correlation Skill of CFSv2 Hindcasts
Week 3−4 Prediction; Lagged Ensemble= 4 days

Jan Temp (59%) Jan Precip (41%)

Jul Temp (36%) Jul Precip (9%)

−0.65 −0.5 −0.35 −0.2 0.2 0.35 0.5 0.65

Figure 3: Correlation skill of week 3-4 temperature and precipitation CFSv2 hindcasts over
CONUS during January and July, 1999-2010 (12 years). The hindcasts are based on a 4-day
lagged ensemble (comprising 16 members drawn from 4x daily hindcasts). Values that are
statistically insignificant at the 5% level (according to the permutation test) are masked out.
The percentage area with significant correlation skill (positive and negative) is indicated in
the title of each panel.
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Figure 4: Cross section of the lagged error covariance for (a) RMM1 and (b) RMM2 in
the CFSv2 are shown in blue. An 8 parameter empirical fits to the lagged error covariance
matrices shown in red. The cross sections are for the 0Z initialization of the lagged ensemble
forecast.
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Figure 5: Normalized MSE of the boreal winter (Nov. 1 - Feb. 28, 1999-2010) MJO forecast
as a function of lagged ensemble size (horizontal axis) and lead (colored curves - the number
denotes forecast lead in days). The MSE is computed in terms of the standard Wheeler
and Hendon (2004) RMM1/RMM2 indices. (a) normalized MSE for MJO forecast from
the 0Z initialization of CFSv2. (b) Empirically derived normalized MSE computed using
the fit shown in Fig 4. (c) normalized MSE for MJO forecast when 0Z, 6Z, 12Z, and 18z
initializations of CFSv2 are used. (d) Empirically derived normalized MSE computed using
the fit shown in Fig. 4 interpolated to include 4 separate initializations.
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Figure 6: Empirically derived normalized MSE for CFSv2 hindcasts of MJO during boreal
winter (1 November to 28 February) as a function of lagged ensemble size (horizontal axis)
and lead (colored curves-the number denotes forecast lead in days). MSE is found using
the parametric model fitted to error covariance matrices of RMM1 and RMM2 for hindcasts
initialized 1 day apart and then interpolated to (a) four burst initializations and (b) for infinite
burst for each 4 day initializations.
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Figure 7: Parametrically derived normalized MSE for CFSv2 forecasts of Niño3.4 as a func-
tion of ensemble size for a ”burst” ensemble (solid color curves), lagged ensemble with four
initializations per day (color dashed curves), and optimally weighted lagged ensemble for
forecasts initialized 4 times per day(black curves). Each set of color curves corresponds
to MSE estimates for the specified lead time. Estimates for the ”burst” ensemble are com-
puted assuming the ensemble members are initialized an infinitesimal time step apart. The
dotted vertical line denotes the location of the 8 day lagged ensemble when four separate
initializations are included.
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Figure 8: Illustration of the cross-lead error covariance matrix and corresponding weights
of an optimal lagged ensemble. The covariance matrix can be decomposed in terms of a
correlation matrix (R) and a diagonal matrix (D). Assuming the correlation matrix is given
by power law decay, with correlations shown in (a), parameterized using the values ρ =
(0:8; 0:5; 0:1) (green, red, blue, respectively). The mean square error (i.e., diagonal element
of D) is parameterized as (b) a sigmoid, (d) linear, and (f) constant function of lead, and
the respective weights are shown in (c), (e), and (g). The color of the curve for the weights
coincides with the color of the correlation function in Figure 3a used to define the covariance
matrix.
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Figure 9: The CFSv2 Niño-3.4 index forecast climatology for (top) October, November, and
December targets and (bottom) January, February, and March targets as a function of lead
time as provided by EMC (jagged colored lines), fit to be periodic in target month T/linear
in lead time L (black line segments) and estimated by local linear regression (smooth gray
curve). Circles are hindcast averages.

19



Figure 10: March 2017 2-m temperature anomalies with respect to the (a), (b) EMC clima-
tology and the (c), (d) local linear forecast climatology for forecasts starting at (left) 1800 31
Jan 2017 and (right) 0000 1 Feb 2017. The label S denotes start time.
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