Using the Operational and the Experimental NLDAS Monitoring Systems to Investigate the Impact of Hurricane Harvey and Irma on Flooding

Youlong Xia¹, Michael B. Ek¹, David M. Mocko², and Christa D. Peters-Lidard³

¹Environmental Modeling Center (EMC), National Centers for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), College Park, Maryland

²Hydrological Sciences Laboratory (HSL), Goddard Space Flight Center (GSFC), National Aeronautics and Space Administration (NASA) and SAIC at NASA/GSFC/HSL, Greenbelt, Maryland

³Deputy Director for Hydrosphere, Biosphere, and Geophysics, Earth Sciences Division, NASA/GSFC, Greenbelt, Maryland (Allison McLemore)

Hurricane Harvey

https://en.wikipedia.org/wiki/Hurricane_Harvey

Maximum rainfall for a 4-day period > 1000 mm Wettest tropical hurricane brought heavy Rain

and caused catastrophic flooding

landfall in southern Texas on August 25				
ormed	August 17, 2017			
issipated	September 3, 2017			
(Extratropical after September 1)				
ighest winds	<u>1-minute sustained</u> :			
	130 mph (21 <u>5 km/h)</u>			
owest pressure 938 mbar (hf Tropical cyclone sc				
atalities	83 confirmed			
amage	≥ \$70 billion (2017 USD)			
	(Preliminary total; unofficially third-			
	costliest tropical cyclone in U.S.			
	history)			
reas affected	Windward Islands, Suriname,			
	Guyana, Nicaragua,			
	Honduras, Belize, Yucatán			
	Peninsula, Southern and			
	Eastern United States			
	(especially Texas, Louisiana)			
Part of the 2017 Atlantic hurricane season				

Hurricane Harvey at peak intensity, prior to

Soil moisture condition before Harvey landing (operational NLDAS)

Top 1m soil moisture anomaly

Total column soil moisture anomaly

Eastern Texas and Louisiana deep soil is wet and streamflow anomaly is largely positive. If heavy precipitation occurs, flooding will be expected.

Extremely heavy rainfall and relatively wet soil caused the catastrophic flooding in TX-LA region

(c) Runoff Anomaly

(d) Streamflow Anomaly

Ensemble—Mean: Current Streamflow Anomaly (m¹/s) NCEP NLDAS Products_Valid: AUG 20, 2017

Past Harvey Impact

Experimental realtime NLDAS forcing generation procedure

CPC gauge precipitation, stage II precipitation, NAMv4 forecast precipitation, as well as NAMv4 reanalysis and forecast data (i.e., radiation, air temperature, humidity, wind, surface pressure) are used to extend NARR/RCDAS data to achieve realtime NLDAS system

Ek et al, 2017, NCEP LDAS white paper

Operational NLDAS2.0 vs Experimental real-time NLDAS2.5

Hurricane Irma

https://en.wikipedia.org/wiki/Hurricane_Irma

Soil moisture conditions on 09 September 2017

(a) Precipitation anomaly

Relatively less precipitation and dry soil are causing less severe inland flooding in FL, GA, SC when compared with Texas-Louisiana case.

(b) Total column SM percentile

Impact of different soil and hydrology processes on soil moisture (field capacity, hydrological conductivity, root zone depth etc.)

11

Operational vs real-time NLDAS

operational precipitation and streamflow Anomaly

real-time precipitation and streamflow Anomaly

NLDAS and NCEP/GLDAS development and future plan – white paper

Next Phase of the NCEP Unified Land Data Assimilation System (NULDAS): Vision, Requirements, and Implementation

Michael B. Ek¹, Christa D. Peters-Lidard², Youlong Xia¹, David M. Mocko², Jesse Meng¹, Sujay V. Kumar², Helin Wei¹, Jiarui Dong¹, Augusto Getirana², and Shugong Wang²

¹Environmental Modeling Center (EMC), National Centers for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), College Park, MD, USA

²Hydrological Sciences Laboratory, Goddard Space Flight Center (GSFC), National Aeronautics and Space Administration (NASA), Greenbelt, MD, USA

Contents

1.	Introduction	+
2.	NLDAS	4
	2.1 Background and Status	4
	2.2 Next Phase Vision and Requirements	5
	2.3 Next Phase Status and Plans	5
	2.3.1 NLDAS-2.5	6
	2.3.2 NLDAS-3.0	8
	2.3.3 NLDAS-3.5 and Beyond	10
3.	NCEP Global LDAS (GLDAS)	11
	3.1 Background and Status	11
	3.2 Next phase Vision and Requirements	11
	3.3 Next Phase Status and Plans	12
	3.3.1 GLDAS2.2	12
	3.3.2 GLDAS3.0	12
	3.3.3 GLDAS3.5 and Beyond	13
	3.4 Joint LDAS Sciences Testbed	13
4.	Unification of Two LDAS Systems	14
5.	Awareness and Survey	14
6.	Tentative Implementation Plan	14
	References	14
	List of Acronyms	14

NLDAS development and update will help enhance its capability for both drought and flooding monitoring task.

http://www.emc.ncep.noaa.gov/mmb/nldas/White_Paper_for_Next_Phase_LDAS_final.pdf

13

Summary and Conclusions

- NLDAS can monitor many features of the flooding caused by Hurricanes Harvey and Irma, but going to a finer grid-scale than the current 1/8th-degree operational system could provide additional details (e.g., National Water Model).
- Harvey brought heavy precipitation over a long duration, over soils in TX and LA that were relatively wet before landfall; these conditions caused catastrophic inland flooding.
- Irma had stronger wind over a larger inland area and less precipitation (compared to Harvey), and affected states of FL, GA, and SC had relatively dry soil before landfall, potentially mitigating the level of inland flooding observed.
- Real-time NLDAS-2.5 does definitely help monitor the flooding situation when compared to the current operational NLDAS-2 with a 4-day delay.
- NLDAS development and upgrades including addition of data assimilation, model physics and parameters upgrades, and increasing fine resolution will further enhance its capability to operationally monitor drought and flood occurrence, duration, and termination. For details, see the recently-released white paper.

Experimental realtime NLDAS-2.5 products can be downloaded: <u>ftp://ldas.ncep.noaa.gov/experimental_NLDAS2.5/dev</u>

Any Comments & Questions?

NCEP NLDAS website: <u>http://www.emc.ncep.noaa.gov/mmb/nldas/</u> NASA NLDAS website: <u>https://ldas.gsfc.nasa.gov/nldas/</u> NLDAS publications: <u>https://ldas.gsfc.nasa.gov/nldas/NLDASpublications.php</u>