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Heat-Related ER Visits v. Daily Max Temperature NC Coastal Area

Combining heat exposure indices and with

socioeconomic data to build a heat vulnerability index
for the Southeast United States 1000

Howard J. Diamond, NOAA OAR/ARL

Durham NC Monthly Hours at Heat Index (°C)
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When Extreme Heat Meets With Dry Spell: How Does Air Quality Respond ?
Yuxuan Wang, University of Houston

Temperature Soil moisture decrease wienqd BiOgenic VOC Wildfire Emissions
M . ° ¢ Edroughl
nerefiéatwaves Emissions 1o -
—_ H
Extreme Air g o \ S o,
pollution E £ 3X higher
Drought frequency More heatwaves w/ drought ) -
; i ' o 0 :
Mar-Oct . Low  Mild Severe drought normal wet
GRS stress  drought drought Condition
1990-2014 ' ¢ : o
8 75% higher PM
2011 SUS Drought s el Pz s
_ T
b . fa oy
= e ‘g’ o | Non-Drought B Seasait
Ozone , Mean Enhancements -'} Z F "] oa . co
"= e | “ldry only ) ) g @ NO3
-t . T dry+heatwave 03' 3.4 ppr (dry) o E Ny
il T mi omd | 20% more (dry+heat) AR
3 II II II II ED ~ T . II II 00(;)135 5 g Dl sulfate -
= e P = ot . - <
I e Be Bg : | | PM,c: 1.7 pg/m3(dry) oons &, T et aoms
! O S et e e e ) -0.03
% Y —10%* L4 + 4 0
| e oot s o] B oo o 12% more (dry+heat) |swc (0-1m) Wang Y. et al., JAS, 2015;
Enhancement Enhancement Wang Y. et al., ACP, 2017 | NOAA Drought Task Force Zhao, Wang, et al., ES&T, 2019



Potential Impacts of Extreme Heat on Air Quality Forecasting
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Compound risks of heat and haze extreme in South Asia

Xu, Yangyang (Texas A&M University)

NOAA workshop on heat extremes, Nov, 2019

Motivation:

First large-scale assessment of

the co- occurrence of heat extreme and haze extreme

the future evolution and
the human exposure
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1997-2004 (Decade 2000) and 2046-2054 (Decade 2050).

Methods:

2 sets of high-resolution WRF_Chem decadal-long simulation [Kumar,

2018]

that is evaluated thoroughly based on in situ measurement of air quali
and also bias-corrected against meteorological reanalysis.

Results:

Worrying Future Outlook...

But useful for raising the awareness and anticipating scale of adaptation
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Reduced ozone removal by water stressed vegetation exacerbates air

pollution during heatwaves
(Meiyun Lin, NOAA GFDL/Princeton)

Borden Forest, Ontario, Canada
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Urban Heat Island Mapping & Modeling Campaigns

David.Herring@noaa.gov | Vivek Shandas, PhD (vs@capastrategies.com)
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An Experimental Real-time Global Monitoring and Forecasting System for Excess Heat and Health

Augustin Vintzileos
University of Maryland - ESSIC

The Monitoring &

: Daily Real-time Monitori F :
Forecasting System: aily Real-time Monitoring and Forecast Future Work
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Understanding Future Change in Subseasonal
Temperature Variability and Heat Waves

Haiyan Teng
National Center for Atmospheric Research

CESM1 TAS 2070-2100 wrt 1980-2010

* Change in variability vs.

- mean
j * Amplification of planetary
3 > waves ?
o3
N @ * Enhanced
: atmosphere-land
= feedback ?
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Temperature (F)

Brian Vant-Hull Indoor Heat Waves

CREST Institute
City College of New York During heat waves those most
at risk tend to be indoors,
which can be treated as
>4 greenhouses with
3 (1-Cf)eSo temperatures driven by
Blgng | T—> & ‘T — outdoor weather.
o T Results from the Harlem Heat
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: How dry soil moisture extremes exacerbate heatwaves over the
contiguous United States m

David Benson & Paul Dirmeyer (GMU/COLA)
NOAA Grant: NOAA / NA160AR4310095

Backgroun
Ghis study shows that there are certain thresholds

of soil moisture below which there is a shift in the sensitivity of the

atmospheric temperature to soil moisture

Regime shifts of Land-Atmosphere coupling
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Data & Methods

ERA 5 reanalysis investigated over the US and fluxnet data
The relationship between extremely dry soil moisture and hot
temperature extremes is shown to be piecewise linear

Results

Changepoint estimation of SM vs T for August 1979-2018 . . .
Daily Soil moisture VS Tmax for August 1980-2018 (AZ) Jaily Soil moisture VS Tmax for August 1980-2018 (NC)
s
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Discussio

D There are significant physical processes that determine the

changepoints

«  These changepoints can serve as indicators for a shift from
sensitive to hypersensitive response of the atmosphere to the
land

« Accurate prediction of regime shifts can lead to
improvements in predicting heatwave events exacerbated by
L-A feedback

Benson, D. O. & Dirmeyer, P. A. (2019) Characterizing the relationship between

temperature and soil moisture extremes and their role in the exacerbation of heatwaves
over the contiguous United States (In preparation)



NOAA CPO ESSM 2019 Community Workshop: Climate Research to Enhance Resilience to Extreme Heat

Effect of Irrigation on Humid Heat Extremes
Nir Y Krakauer (CCNY), Bl Cook and MJ Puma (NASA—_GVISS)_

Y i

> Expansion of irrigation has lead to regional cooling, particularly during

the hottest days
- What about humidity?

- Wet-bulb temperature (T,, — can be thought of as combination of
temperature and humidity) sets a heat stress adaptability limit
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percentile  daily-maximum T, for
warmest month (K). Only differences that
are over land and significant at 95% are
shown. Irrigation reduces maximum T
over most of the hot land areas, but
increases humidity and hence maximum
T,, over many of them, notably the central

1ICA

Land management affects heat extremes
Extreme-heat research needs to consider humidity, not just T — irrigation

reduces T but worsens humidity

UE

Henry Koerner, It Isn't the Heat,

It's the Humidity (1947-8).
Carnegie  Museum  of  Art,
Pittsburgh.

mail@nirkrakauer.net
MS in prep for ERL
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Detection of anthropogenic influence on a summertime heat stress index

Wet Bulb Globe Temperature Trend Assessment (1973-2012):

Thomas Knutson
NOAA/OAR/GFDL

Detectable anthro. increase, greater than modeled (2%)
Detectable anthro. increase, consistent with modeled (67%)
Detectable increase, less than modeled (3%)

| No detectable trend; (27%)

'Detectable decrease, less than modeled (0%)

'Detectabl‘e decrease, consistent with modeled (0%)
Surface Air Temperature Trend Assessment (1973-2012):

Detectable decrease, greater than modeled (2%)
Detectable anthro. increase, greater than modeled (6%)

Some remaining issues for U.S.:

Assessment of Annual Surface Temperature Trends (1901-2015)
a) Observed trend (1901 —2015)

ol Sam

Detectable increase, less than modeled (<1%) | S i

Detectable anthro. increase, consistent with modeled (41%)

No detectable trend; (51%)

Detectable decrease, less than modeled (0%)

feow o fo0°E Detectable decrease, consistent with modeled (0%)

Detectable decrease, greater than modeled (1%)

6% Detectable anthro. increase,
greater than modeled
Detectable anthro. increase,

Sources: Knutson and Ploshay, 2016, Climatic Change,;
NCA4: Climate Science Special Report (2017)
Adapted from Knutson et al. J. Climate 2013

consistent with models

Detectable increase,

less than modeled

No detectable trend; white
hatching: consistent with models

White hatching.
Obs. Consistent with All-Forcing Simulations

Insufficient data



How does Extratropical cyclone activity impact extreme

‘\\\\ Stony Brook University

School of Marine and
Atmospheric Sciences
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heat?

Edmund Chang, Stony Brook University

Cyclones bring clouds

Fewer or weaker cyclones bring less clouds

Less clouds imply more solar radiation reaching
surface and higher maximum temperature
Several studies have shown that in observations
maximum temperature in summer is negatively
correlated with level of cyclone activity

GCM'’s simulate much weaker correlations than
those observed (Chang et al. 2016; Ma 2019)
CMIP5 models project weaker cyclone activity in
summer under changing climate, potentially less
clouds from cyclones

- This could potentially accentuate warming



The 2012 extreme heat in NW Atlantic: from understanding to predictability
Ke Chen (kchen@whoi.edu), Woods Hole Oceanographic Institution
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* Earlier and more intense spring bloom

* Higher zooplankton biomass

= Earlier landing and larger catch of lobster

\" Northward shift of butterfish, black sea bass, Atlantic cod
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2. Temperature anomaly (no seasonal cycle) budget
. l % Cumulative air-sea heat flux

=  Anomalous air-sea flux,

associated with jet stream
variability
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= Strong interannual variability: oceanic and atmospheric
fluxes change dramatically from year to year

= Deterministic prediction of NW Atlantic is challenging,

2

\_ but is an exciting research topic
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Average SST along the

Time series

Which El Nifio Flavors are Most Important for US West Coast Extreme Marine Warming?

NOAA/ESRL Physical Sciences Division

Antonietta Capotondi
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Net Radiation is the driver weather and climate

Incoming Solar
Radiation

Net Radiation = SW1 + SW| + LW1 +LW| =SH + LH + GH

Outgoin
Scattered and absorbed solar by atmosphere

Scattered and absorbed solar by clouds
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Expanded SURFRAD

Integrated Approach —
Modeling and
Observations (ground
and satellite)

Foundational long-
term observations
across time (diurnal,
seasonal, decadal)
and spatial scales
(synoptic to local)

Connections - Land
Atmospheric
Interactions and
Feedbacks

Predictive capabilities




Remote sensing solutions to combat extreme  py—
heat at relevant spatio-temporal scales - | o RICEAIDUY

\ PR el NOAA CREST, NOAA

Using ground based observations & machine learning techniques, we
will able to predict/nowcast high resolution urban air temperature,

hUMIdlty and heat index Ramamurthy et. al. 2016; Ramamurthy et. al. 2017; Hrisko et. al. 2019




Elie Bou-Zeid, Civil and Environmental Engineering
Princeton University
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