Lightning Talks

ESSM Extreme Heat Workshop Day 1

National Integrated Heat Health Information System (NIHHIS) Decision-maker Use Cases & Climate Information Needs

Improving climate & health services by understanding decision-maker demand and integrating information across timescales and disciplines.

Long term assessment of risk of cancellation, Heat island route mapping, WBGT extended prediction

Urban Heat Island **Intensity Maps**

S2S Temperature **Predictions**

Urban-scale Climate Modeling

Annual **Temperature Predictions**

Climate Attribution

Scenariobased Climate Info

Wet Bulb Globe Temp. **Predictions**

Heat Index **Predictions**

Decadal climate predictions sensitive to critical thresholds for grid resilience

Allocating limited funds to summer cooling and winter heating subsidies.

Informing energy customers with predicted monthly climate & cost estimates

Combining UHI information and CDC & Census Social **Vulnerability**

Urban-scale modeling to understand effectiveness of interventions

Statistical downscaling of climate predictions via **UHI** maps

Combining heat exposure indices and with socioeconomic data to build a heat vulnerability index for the Southeast United States

Howard J. Diamond, NOAA OAR/ARL

2011 Durham NC Daily Heat Duration (Minutes)

Heat-Related ER Visits v. Daily Max Temperature NC Coastal Area

Combined Index for July 1, 2012: HVI*Maximum Temperature/Threshold Temperature

When Extreme Heat Meets With Dry Spell: How Does Air Quality Respond?

Yuxuan Wang, University of Houston

郊

**>

哭

Potential Impacts of Extreme Heat on Air Quality Forecasting

Modeling Windblown Dust

Daniel Tong
Barry Baker
Rick Saylor
NOAA/OAR/ARL

100.0 95.0

90.0

85.0

80.0 75.0

70.0

30.0

25.0 20.0 15.0 10.0

5.0

Fire Radiative Power
Atmospheric Stability
Wind Direction
Plume Rise & PBL Depth
Fuel Source

Fire Location and Duration

GOES-R Fire Obs

FENGSHA dust emission algorithm

NWS NAQFC

GEFS-Aerosol

Modeling Smoke from Wildfires

Compound risks of heat and haze extreme in South Asia

Xu, Yangyang (Texas A&M University)

NOAA workshop on heat extremes, Nov, 2019

Motivation:

First large-scale assessment of the co- occurrence of heat extreme and haze extreme the **future** evolution and the **human** exposure

1997-2004 (Decade 2000) and 2046-2054 (Decade 2050).

• Methods:

2 sets of high-resolution WRF_Chem decadal-long simulation [Kumar, 2018]

that is evaluated thoroughly based on in situ measurement of air quality and also bias-corrected against meteorological reanalysis.

Results:

Worrying Future Outlook...

But useful for raising the awareness and anticipating scale of adaptation

Land fraction with more than 60 days of exposure

Reduced ozone removal by water stressed vegetation exacerbates air pollution during heatwaves

(Meiyun Lin, NOAA GFDL/Princeton)

Urban Heat Island Mapping & Modeling Campaigns

David.Herring@noaa.gov | Vivek Shandas, PhD (vs@capastrategies.com)

An Experimental Real-time Global Monitoring and Forecasting System for Excess Heat and Health

Augustin Vintzileos

University of Maryland - ESSIC

The Monitoring & Forecasting System:

Heat and Health Formula (Nairn and Fawcett, 2014):

$$EHI_{sig} = \frac{1}{3}(T_i + T_{i-1} + T_{i-2}) - T_{95\%}$$

$$EHI_{acclim} = \frac{1}{3}(T_i + T_{i-1} + T_{i-2}) - \frac{1}{30} \sum_{k=i-32}^{i-3} T_k$$

 $EHF = max(0, EHI_{sig}) \times max(1, EHI_{accl})$

Model: CFSv2 (used for the forecasting component)

- 16 member ensemble forecasts
- Reforecast 1999-2010

Bias correction

- Quantile mapping
- Correction basis: ERA-Interim 1999-2010

Daily Real-time Monitoring and Forecast:

excess-heat.org

Quantile of the maximum daily EHF within the selected period

Future Work

Define impacts of heat on health using thermal manikins (e.g., IESD-Fiala model)

Very high resolution (~500 meters) downscaling with the WRF

Probabilistic attribution of individual heat waves to climate variability and climate change

% = (Compound Days)/(All Heat Wave Days)*100

Baldwin et al 2019, Earth's Future "Temporally Compound Heat Wave Events and Global Warming: An Emerging Risk"

additional compound days

Understanding Future Change in Subseasonal Temperature Variability and Heat Waves

Haiyan Teng National Center for Atmospheric Research

- Change in variability vs. mean
- Amplification of planetary waves?
- Enhanced atmosphere-land feedback?

Brian Vant-Hull CREST Institute City College of New York

Indoor Heat Waves

During heat waves those most at risk tend to be indoors, which can be treated as greenhouses with temperatures driven by outdoor weather.
Results from the Harlem Heat Project

Lightning Talks

ESSM Extreme Heat Workshop Day 2

How dry soil moisture extremes exacerbate heatwaves over the contiguous United States

by David Benson & Paul Dirmeyer (GMU/COLA)

NOAA Grant: NOAA / NA160AR4310095

Backgroun

• **\$\quad**\$his study shows that there are certain thresholds of soil moisture below which there is a shift in the sensitivity of the atmospheric temperature to soil moisture

Data & Methods

- ERA 5 reanalysis investigated over the US and fluxnet data
- The relationship between extremely dry soil moisture and hot temperature extremes is shown to be piecewise linear

Results

Discussio

- There are significant physical processes that determine the changepoints
- These changepoints can serve as indicators for a shift from sensitive to hypersensitive response of the atmosphere to the land
- Accurate prediction of regime shifts can lead to improvements in predicting heatwave events exacerbated by L-A feedback

Benson, D. O. & Dirmeyer, P. A. (2019) Characterizing the relationship between temperature and soil moisture extremes and their role in the exacerbation of heatwaves over the contiguous United States (In preparation)

Effect of Irrigation on Humid Heat Extremes

Nir Y Krakauer (CCNY), BI Cook and MJ Puma (NASA-GISS)

- > Expansion of irrigation has lead to regional cooling, particularly during the hottest days
 - What about humidity?
 - \Box Wet-bulb temperature (T_w can be thought of as combination of temperature and humidity) sets a heat stress adaptability limit

irrigation in GISS ModelF minus No-irrigation 90th-percentile daily-maximum T_w for warmest month (K). Only differences that are over land and significant at 95% are shown. Irrigation reduces maximum T over most of the hot land areas, but increases humidity and hence maximum T_w over many of them, notably the central LICA

Messages:

- Land management affects heat extremes
- □ Extreme-heat research needs to consider humidity, not just T − irrigation reduces T but worsens humidity

Henry Koerner, *It Isn't the Heat*, *It's the Humidity* (1947-8). Carnegie Museum of Art, Pittsburgh.

mail@nirkrakauer.net
MS in prep for ERL

Detection of anthropogenic influence on a summertime heat stress index

Sources: Knutson and Ploshay, 2016, Climatic Change;

NCA4: Climate Science Special Report (2017) Adapted from Knutson et al. J. Climate 2013

Thomas Knutson NOAA/OAR/GFDL

Some remaining issues for U.S.: Assessment of Annual Surface Temperature Trends (1901–2015)

How does Extratropical cyclone activity impact extreme heat?

Edmund Chang, Stony Brook University

- Cyclones bring clouds
- Fewer or weaker cyclones bring less clouds
- Less clouds imply more solar radiation reaching surface and higher maximum temperature
- Several studies have shown that in observations maximum temperature in summer is negatively correlated with level of cyclone activity
- GCM's simulate much weaker correlations than those observed (Chang et al. 2016; Ma 2019)
- CMIP5 models project weaker cyclone activity in summer under changing climate, potentially less clouds from cyclones
 - This could potentially accentuate warming

The 2012 extreme heat in NW Atlantic: from understanding to predictability

Ke Chen (kchen@whoi.edu), Woods Hole Oceanographic Institution

- Earlier and more intense spring bloom
- Higher zooplankton biomass
- Earlier landing and larger catch of lobster
- Northward shift of butterfish, black sea bass, Atlantic cod

Deterministic prediction of NW Atlantic is challenging,

but is an exciting research topic

Which El Niño Flavors are Most Important for US West Coast Extreme Marine Warming?

Antonietta Capotondi NOAA/ESRL Physical Sciences Division

Lag-Correlations between Niño3.4 and SST_C (black) and Opt9 and SST_C (red)

Largest corr. with Niño34 is ~0.5 with Niño34 leading by 2-3 months

Largest corr with Opt9 is ~0.65 with Opt9 leading

Expanded SURFRAD

Network

Integrated Approach – Modeling and Observations (ground and satellite)

Foundational longterm observations across time (diurnal, seasonal, decadal) and spatial scales (synoptic to local)

Connections - Land Atmospheric Interactions and Feedbacks

Predictive capabilities

Remote sensing solutions to combat extreme

heat at relevant spatio-temporal scales

[P.Ramamurthy, H. Norouzi, B.Yu] CUNY, NOAA CREST, NOAA **GOES-16: Street Scale**

Using ground based observations & machine learning techniques, we will able to predict/nowcast high resolution urban air temperature,

humidity and heat index

Elie Bou-Zeid, Civil and Environmental Engineering Princeton University

Temperature

But what is local?

