Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Laboratory Experiments Simulate Real World Atmospheric Aerosol Formation


Secondary organic aerosol (SOA) produced from the reaction of volatile organic compounds (VOC) and other compounds in the atmosphere represents a large portion of global ozone. SOA contributes to fine particulate air pollution, which impacts global climate and human health. Researchers have found that when a strong atmospheric oxidant called the nitrate radical (NO3) is involved in this reaction, SOA production may be increased to double the amount in the atmosphere. 

A new study, partially funded by the Climate Program Office’s Atmospheric Chemistry, Carbon Cycle and Climate (AC4) Program, investigates NO3 reactions under a wide range of conditions to help discern the processes and conditions that control SOA formation. A group of researchers from the University of Colorado Boulder, Reed College, and NOAA’s Chemical Science Laboratory, including AC4-supported scientists Julianne Fry, Paul Ziemann, and Jose Jimenez, used controlled dark chamber experiments to simulate real-world atmospheric processes. The results, published in The Journal of Physical Chemistry A, add important insights into the understanding of atmospheric chemistry processes, and contribute to a growing body of research supported by AC4 to properly characterize and project changes in air quality.

Read the article »

More News

Scroll to Top