Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOAA CAP/RISA team WWA and NOAA MAPP-supported PhD students present webinar “New insights into the role of snow and machine learning tools in water supply prediction.”


In this webinar, which will take place on Monday, September 11th at 11 am MDT, WWA Director Ben Livneh and NOAA MAPP-supported PhD students Madeline Pernat and Parthkumar Modi will begin with an overview explaining why snow has been so important for water supply forecasting. They will follow by sharing their findings about alternative ways to use snow information to improve the performance of existing forecast techniques. Finally, they will contrast the utility of Machine Learning tools versus the inclusion of additional, non-snow based observational predictions, in improving water supply predictions.

For large populations across the western U.S., water supply prediction relies centrally on knowledge of spring snow conditions, where snowpack can provide critical early warning of anomalous water supplies. As drought conditions emerge or future temperatures rise, snowpack is likely to decline, causing the relationship between snow and streamflow to shift. Recent research found that in the future, snowpack will be less predictive of drought in currently snowmelt-dominated systems in the western U.S.

The research is supported by the NOAA MAPP and NOAA CAP/RISA programs.

Register for the webinar here »

Learn more about WWA » 

Learn more about MAPP » 

For more information, contact Ben Livneh.

Image credit: WWA

Scroll to Top