Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

CAFA Logo

Bottom-up impacts of forecasted climate change on the eastern Bering Sea food web. Special Issue “Using Ecological Models to Support and Shape Environmental Policy Decisions”

Recent observations of record low winter sea-ice coverage and warming water temperatures in the eastern Bering Sea have signaled the potential impacts of climate change on this ecosystem, which have implications for commercial fisheries production. We investigate the impacts of forecasted climate change on the eastern Bering Sea food web through the end of the century under medium- and high-emissions climate scenarios in combination with a selection of fisheries management strategies by conducting simulations using a dynamic food web model. The outputs from three global earth system models run under two greenhouse gas emission scenarios were dynamically downscaled using a regional ocean and biogeochemical model to project ecosystem dynamics at the base of the food web. Four fishing scenarios were explored: status quo, no fishing, and two scenarios that alternatively assume increased fishing emphasis on either gadids or flatfishes. Annual fishery quotas were dynamically simulated by combining harvest control rules based on model-simulated stock biomass, while incorporating social and economic tradeoffs induced by the Bering Sea’s combined groundfish harvest cap. There was little predicted difference between the status quo and no fishing scenario for most managed groundfish species biomasses at the end of the century, regardless of emission scenario. Under the status quo fishing scenario, biomass projections for most species and functional groups across trophic levels showed a slow but steady decline toward the end of the century, and most groups were near or below recent historical (1991–2017) biomass levels by 2080. The bottom–up effects of declines in biomass at lower trophic levels as forecasted by the climate-enhanced lower trophic level modeling, drove the biomass trends at higher trophic levels. By 2080, the biomass projections for species and trophic guilds showed very little difference between emission scenarios. Our method for climate-enhanced food web projections can support fisheries managers by informing strategic guidance on the long-term impacts of ecosystem productivity shifts driven by climate change on commercial species and the food web, and how those impacts may interact with different fisheries management scenarios.

Scroll to Top