NOAA-NASA study quantifies methane leakages in Four Corners area

  • 22 August 2016
  • Number of views: 1442

A study partly funded by the CPO’s Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program was recently published in the Proceedings of the National Academy of Sciences. The paper details research that used in situ measurements to quantify methane emissions from various sources in the Four Corners area, the country’s biggest “hot spot” for methane emissions.


Fugitive methane emissions are thought to often exhibit a heavy-tail distribution (more high-emission sources than expected in a normal distribution), and thus efficient mitigation is possible if we locate the strongest emitters. Here we demonstrate airborne remote measurements of methane plumes at 1- to 3-m ground resolution over the Four Corners region. We identified more than 250 point sources, whose emissions followed a lognormal distribution, a heavy-tail characteristic. The top 10% of emitters explain about half of the total observed point source contribution and ∼1/4 the total basin emissions. This work demonstrates the capability of real-time airborne imaging spectroscopy to perform detection and categorization of methane point sources in extended geographical areas with immediate input for emissions abatement.

Read the full paper:




Americans’ health, security and economic wellbeing are tied to climate and weather. Every day, we see communities grappling with environmental challenges due to unusual or extreme events related to climate and weather. In 2017, the United States experienced a record-tying 16 climate- and weather-related disasters where overall costs reached or exceeded $1 billion. Combined, these events claimed 362 lives, and had significant economic effects on the areas impacted, costing more than $306 billion. Businesses, policy leaders, resource managers and citizens are increasingly asking for information to help them address such challenges.


Climate Program Office
1315 East-West Hwy, Suite 1100
Silver Spring, MD 20910