Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

wildfires

forest fitre, with smoke covering the sky

Understanding Wildfire Emissions From Flaming to Smoldering Using Satellite Data

AC4-funded research finds that data from the Tropospheric Monitoring Instrument (TROPOMI) illuminates key changes in wildfire emissions and impacts that occur while a fire evolves from intense flames to smoldering conditions, emphasizing the value of space-based observations to inform forecasts and models.

Understanding Wildfire Emissions From Flaming to Smoldering Using Satellite Data Read More »

Is Man-Made Climate Change to Blame For Record-Breaking Forest Fires in California?

With 10 of the largest California wildfires occurring in the last 20 years—five of which occurred in 2020 alone—scientists are asking if man-made climate change is to blame.

Is Man-Made Climate Change to Blame For Record-Breaking Forest Fires in California? Read More »

NOAA IRAP and NSF-funded research provides recommendations on tailored and audience-specific risk and crisis communications in the Interior Alaska wildfire infosphere

This research was supported by NOAA’s International Research and Applications Project (IRAP), in partnership with the National Science Foundation (NSF), through the Belmont Forum’s Collaborative Research Action on Climate, Environment and Health (BF/CRA/CEH). Overall, the funding competition provided over $13M to climate and health research via collaboration among 13 funding agencies from 10 countries.

NOAA IRAP and NSF-funded research provides recommendations on tailored and audience-specific risk and crisis communications in the Interior Alaska wildfire infosphere Read More »

Understanding Volatile Organic Compound Emissions from Wildfires in the Western US with Modeling Comparisons

New modeling study funded by AC4 uses a chemical transport model to evaluate commonly used volatile organic compound (VOC) emissions inventories and compare with observational datasets from the FIREX-AQ and WE-CAN field campaigns.

Understanding Volatile Organic Compound Emissions from Wildfires in the Western US with Modeling Comparisons Read More »

Quantifying Sulfur Dioxide Emissions and Understanding Air Quality Impacts from Fire Activity

A team of researchers use observations from FIREX-AQ to quantify sulfur dioxide emissions from wildfires and agricultural burns across the western US to understand how regional and long-range air quality can be affected, in a new research study supported by AC4.

Quantifying Sulfur Dioxide Emissions and Understanding Air Quality Impacts from Fire Activity Read More »

C&GC Fellow Katherine Siegel to present in December 6 Webinar: Wildfire in working landscapes

This webinar is part of a series spotlighting NOAA Climate & Global Change Postdoctoral Fellows and will feature current fellow and interdisciplinary scientist Dr. Katherine Siegel discussing relationships between land management, climate change, and wildfire in forests and rangelands in the western US.

C&GC Fellow Katherine Siegel to present in December 6 Webinar: Wildfire in working landscapes Read More »

New Aerosol Study Uses FIREX-AQ Data to Link Visual Aerosol Properties to Wildfire Smoke Evolution

Using data from the FIREX-AQ field campaign, a new AC4-funded research study develops a comparison between aerosol concentration and the way aerosol particles scatter light in the atmosphere, offering new insights into wildfire smoke evolution.

New Aerosol Study Uses FIREX-AQ Data to Link Visual Aerosol Properties to Wildfire Smoke Evolution Read More »

Identifying and Improving Wildfire Forecast Model Weaknesses Using FIREX-AQ Observations

A new AC4-funded publication utilizes FIREX-AQ observations to evaluate common modeling representations of wildfire smoke plumes and finds they can be improved by expanding the use of observations for heat flux and boundary layer height.

Identifying and Improving Wildfire Forecast Model Weaknesses Using FIREX-AQ Observations Read More »

Scroll to Top